We show that the local density of states (LDOS) of a wide class of tight-binding models has a weak body-order expansion. Specifically, we prove that the resulting body-order expansion for analytic observables such as the electron density or the energy has an exponential rate of convergence both at finite Fermi-temperature as well as for insulators at zero Fermi-temperature. We discuss potential consequences of this observation for modelling the potential energy landscape, as well as for solving the electronic structure problem.