Feature Alignment for Approximated Reversibility in Neural Networks


Abstract in English

We introduce feature alignment, a technique for obtaining approximate reversibility in artificial neural networks. By means of feature extraction, we can train a neural network to learn an estimated map for its reverse process from outputs to inputs. Combined with variational autoencoders, we can generate new samples from the same statistics as the training data. Improvements of the results are obtained by using concepts from generative adversarial networks. Finally, we show that the technique can be modified for training neural networks locally, saving computational memory resources. Applying these techniques, we report results for three vision generative tasks: MNIST, CIFAR-10, and celebA.

Download