Do you want to publish a course? Click here

The combined effects of buoyancy, rotation, and shear on phase boundary evolution

55   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use well-resolved numerical simulations to study the combined effects of buoyancy, pressure-driven shear and rotation on the melt rate and morphology of a layer of pure solid overlying its liquid phase in three dimensions at a Rayleigh number $Ra=1.25times10^5$. During thermal convection we find that the rate of melting of the solid phase varies non-monotonically with the strength of the imposed shear flow. In the absence of rotation, depending on whether buoyancy or shear is dominant, we observe either domes or ridges aligned in the direction of the shear flow respectively. Furthermore, we show that the geometry of the phase boundary has important effects on the magnitude and evolution of the heat flux in the liquid layer. In the presence of rotation, the strength of which is characterized by the Rossby number ($Ro$), we observe that for $Ro = mathcal{O}(1)$ the mean flow in the interior is perpendicular to the direction of the constant applied pressure gradient. As the magnitude of the applied horizontal pressure gradient increases, the geometry of solid-liquid interface evolves from the voids characteristic of melting by rotating convection, to grooves oriented perpendicular to or aligned at an oblique angle to the applied pressure gradient.



rate research

Read More

68 - M. K. Riahi , M. Ali , Y. Addad 2021
The present study deals with the finite element discretization of nanofluid convective transport in an enclosure with variable properties. We study the Buongiorno model, which couples the Navier-Stokes equations for the base fluid, an advective-diffusion equation for the heat transfer, and an advection dominated nanoparticle fraction concentration subject to thermophoresis and Brownian motion forces. We develop an iterative numerical scheme that combines Newtons method (dedicated to the resolution of the momentum and energy equations) with the transport equation that governs the nanoparticles concentration in the enclosure. We show that Stream Upwind Petrov-Galerkin regularization approach is required to solve properly the ill-posed Buongiorno transport model being tackled as a variational problem under mean value constraint. Non-trivial numerical computations are reported to show the effectiveness of our proposed numerical approach in its ability to provide reasonably good agreement with the experimental results available in the literature. The numerical experiments demonstrate that by accounting for only the thermophoresis and Brownian motion forces in the concentration transport equation, the model is not able to reproduce the heat transfer impairment due to the presence of suspended nanoparticles in the base fluid. It reveals, however, the significant role that these two terms play in the vicinity of the hot and cold walls.
This study concerns wavepackets in laminar turbulent transition in a Blasius boundary layer. While initial amplitude and frequency have well-recognized roles in the transition process, the current study on the combined effects of amplitude, frequency, and bandwidth on the propagation of wavepackets is believed to be new. Because of the complexity of the system, these joint variations in multiple parameters could give rise to effects not seen through the variation of any single parameter. Direct numerical simulations (DNS) are utilized in a full factorial (fully crossed) design to investigate both individual and joint effects of variation in the simulation parameters, with a special focus on three distinct variants of wavepacket transition {textemdash} the reverse Craik triad formation sequence, concurrent N-type and K-type transition and abrupt shifts in dominant frequency. From our factorial study, we can summarize the key transition trends of wavepackets as follows: 1. Broad bandwidth wavepackets predominantly transit to turbulence via the N-route. This tendency remains strong even as the frequency width is reduced. 2. Narrow bandwidth wavetrains exhibit predominantly K-type transition. The front broadband part of an emerging wavetrain may experience N-type transition, but this wavefront should not be considered as a part of truly narrow-bandwidth wavepackets. 3. K-type transition is the most likely for wavepackets that are initiated with high energy/amplitude and/or with the peak frequency at the lower branch of the neutral stability curve.
Buoyancy effects and nozzle geometry can have a significant impact on turbulent jet dispersion. This work was motivated by applications involving hydrogen. Using helium as an experimental proxy, buoyant horizontal jets issuing from a round orifice on the side wall of a circular tube were analysed experimentally using particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques simultaneously to provide instantaneous and time-averaged flow fields of velocity and concentration. Effects of buoyancy and asymmetry on the resulting flow structure were studied over a range of Reynolds numbers and gas densities. Significant differences were found between the centreline trajectory, spreading rate, and velocity decay of conventional horizontal round axisymmetric jets issuing through flat plates and the pipeline leak-representative jets considered in the present study. The realistic pipeline jets were always asymmetric and found to deflect about the jet axis in the near field. In the far field, it was found that the realistic pipeline leak geometry causes buoyancy effects to dominate much sooner than expected compared to horizontal round jets issuing through flat plates.
Subcritical transition to turbulence in spatially developing boundary layer flows can be triggered efficiently by finite amplitude perturbations. In this work, we employ adjoint-based optimization to identify optimal initial perturbations in the Blasius boundary layer, culminating in the computation of the subcritical transition critical energy threshold and the associated fully localized critical optimum in a spatially extended configuration, the so called minimal seed. By dynamically rescaling the variables with the local boundary layer thickness, we show that the identified edge trajectory approaches the same attracting phase space region as previously reported edge trajectories, and reaches the region more efficiently.
Three-dimensional particle tracking experiments were conducted in a turbulent boundary layer with friction Reynolds number $Re_tau$ of 700 and 1300. Two finite size spheres with specific gravities of 1.003 (P1) and 1.050 (P2) and diameters of 60 and 120 wall units were released individually from rest on a smooth wall. The spheres were marked with dots all over the surface to monitor their translation and rotation via high-speed stereoscopic imaging. The spheres accelerated strongly after release over streamwise distances of one boundary layer thickness before approaching an approximate terminal velocity. Initially, sphere P1, which had Reynolds numbers $Re_p$ of 800 and 1900, always lifts off from the wall. Similar behavior was observed occasionally for sphere P2 with initial $Re_p$ of 1900. The spheres that lifted off reached an initial peak in height before descending towards the wall. The sphere trajectories exhibited multiple behaviors including saltation, resuspension and sliding motion with small random bouncing depending on both $Re_tau$ and specific gravity. The lighter sphere at $Re_tau=1300$, which remained suspended above the wall during most of its trajectory, propagated with the fastest streamwise velocity. By contrast, the denser sphere at $Re_tau=700$, which mostly slid along the wall, propagated with the slowest streamwise velocity. After the spheres approached an approximate terminal velocity, many experienced additional lift-off events that were hypothesized to be driven by hairpins or coherent flow structures. Spheres were observed to rotate about all three coordinate axes. While the mean shear may induce a rotation about the spanwise axis, near-wall coherent structures and the spheres wake might drive the streamwise and wall-normal rotations. In all cases where the sphere propagates along the wall, sliding motion, rather than forward rolling motion, is dominant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا