Do you want to publish a course? Click here

Regularised B-splines projected Gaussian Process priors to estimate the age profile of COVID-19 deaths before and after vaccine roll-out

66   0   0.0 ( 0 )
 Added by M\\'elodie Monod
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The COVID-19 pandemic has caused severe public health consequences in the United States. The United States began a vaccination campaign at the end of 2020 targeting primarily elderly residents before extending access to younger individuals. With both COVID-19 infection fatality ratios and vaccine uptake being heterogeneous across ages, an important consideration is whether the age contribution to deaths shifted over time towards younger age groups. In this study, we use a Bayesian non-parametric spatial approach to estimate the age-specific contribution to COVID-19 attributable deaths over time. The proposed spatial approach is a low-rank Gaussian Process projected by regularised B-splines. Simulation analyses and benchmark results show that the spatial approach performs better than a standard B-splines approach and equivalently well as a standard Gaussian Process, for considerably lower runtimes. We find that COVID-19 has been especially deadly in the United States. The mortality rates among individuals aged 85+ ranged from 1% to 5% across the US states. Since the beginning of the vaccination campaign, the number of weekly deaths reduced in every US state with a faster decrease among individuals aged 75+ than individuals aged 0-74. Simultaneously to this reduction, the contribution of individuals age 75+ to deaths decreased, with important disparities in the timing and rapidity of this decrease across the country.



rate research

Read More

Updating observations of a signal due to the delays in the measurement process is a common problem in signal processing, with prominent examples in a wide range of fields. An important example of this problem is the nowcasting of COVID-19 mortality: given a stream of reported counts of daily deaths, can we correct for the delays in reporting to paint an accurate picture of the present, with uncertainty? Without this correction, raw data will often mislead by suggesting an improving situation. We present a flexible approach using a latent Gaussian process that is capable of describing the changing auto-correlation structure present in the reporting time-delay surface. This approach also yields robust estimates of uncertainty for the estimated nowcasted numbers of deaths. We test assumptions in model specification such as the choice of kernel or hyper priors, and evaluate model performance on a challenging real dataset from Brazil. Our experiments show that Gaussian process nowcasting performs favourably against both comparable methods, and against a small sample of expert human predictions. Our approach has substantial practical utility in disease modelling -- by applying our approach to COVID-19 mortality data from Brazil, where reporting delays are large, we can make informative predictions on important epidemiological quantities such as the current effective reproduction number.
The COVID-19 pandemic has reshaped the demand for goods and services worldwide. The combination of a public health emergency, economic distress, and misinformation-driven panic have pushed customers and vendors towards the shadow economy. In particular, dark web marketplaces (DWMs), commercial websites accessible via free software, have gained significant popularity. Here, we analyse 851,199 listings extracted from 30 DWMs between January 1, 2020 and November 16, 2020. We identify 788 listings directly related to COVID-19 products and monitor the temporal evolution of product categories including Personal Protective Equipment (PPE), medicines (e.g., hydroxyclorochine), and medical frauds. Finally, we compare trends in their temporal evolution with variations in public attention, as measured by Twitter posts and Wikipedia page visits. We reveal how the online shadow economy has evolved during the COVID-19 pandemic and highlight the importance of a continuous monitoring of DWMs, especially now that real vaccines are available and in short supply. We anticipate our analysis will be of interest both to researchers and public agencies focused on the protection of public health.
The COVID-19 pandemic has impacted billions of people around the world. To capture some of these impacts in the United States, we are conducting a nationwide longitudinal survey collecting information about travel-related behaviors and attitudes before, during, and after the COVID-19 pandemic. The survey questions cover a wide range of topics including commuting, daily travel, air travel, working from home, online learning, shopping, and risk perception, along with attitudinal, socioeconomic, and demographic information. Version 1.0 of the survey contains 8,723 responses that are publicly available. The survey is deployed over multiple waves to the same respondents to monitor how behaviors and attitudes evolve over time. This article details the methodology adopted for the collection, cleaning, and processing of the data. In addition, the data are weighted to be representative of national and regional demographics. This survey dataset can aid researchers, policymakers, businesses, and government agencies in understanding both the extent of behavioral shifts and the likelihood that these changes will persist after COVID-19.
147 - Spencer A. Thomas 2021
We analysed publicly available data on place of occurrence of COVID-19 deaths from national statistical agencies in the UK between March 9 2020 and February 28 2021. We introduce a modified Weibull model that describes the deaths due to COVID-19 at a national and place of occurrence level. We observe similar trends in the UK where deaths due to COVID-19 first peak in Homes, followed by Hospitals and Care Homes 1-2 weeks later in the first and second waves. This is in line with the infectious period of the disease, indicating a possible transmission vehicle between the settings. Our results show that the first wave is characterised by fast growth and a slow reduction after the peak in deaths due to COVID-19. The second and third waves have the converse property, with slow growth and a rapid decrease from the peak. This difference may result from behavioural changes in the population (social distancing, masks, etc). Finally, we introduce a double logistic model to describe the dynamic proportion of COVID-19 deaths occurring in each setting. This analysis reveals that the proportion of COVID-19 deaths occurring in Care Homes increases from the start of the pandemic and past the peak in total number of COVID-19 deaths in the first wave. After the catastrophic impact in the first wave, the proportion of COVID-19 deaths occurring in Care Homes gradually decreased from is maximum after the first wave indicating residence were better protected in the second and third waves compared to the first.
Parking demand forecasting and behaviour analysis have received increasing attention in recent years because of their critical role in mitigating traffic congestion and understanding travel behaviours. However, previous studies usually only consider temporal dependence but ignore the spatial correlations among parking lots for parking prediction. This is mainly due to the lack of direct physical connections or observable interactions between them. Thus, how to quantify the spatial correlation remains a significant challenge. To bridge the gap, in this study, we propose a spatial-aware parking prediction framework, which includes two steps, i.e. spatial connection graph construction and spatio-temporal forecasting. A case study in Ningbo, China is conducted using parking data of over one million records before and during COVID-19. The results show that the approach is superior on parking occupancy forecasting than baseline methods, especially for the cases with high temporal irregularity such as during COVID-19. Our work has revealed the impact of the pandemic on parking behaviour and also accentuated the importance of modelling spatial dependence in parking behaviour forecasting, which can benefit future studies on epidemiology and human travel behaviours.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا