Improved convergence rates and trajectory convergence for primal-dual dynamical systems with vanishing damping


Abstract in English

In this work, we approach the minimization of a continuously differentiable convex function under linear equality constraints by a second-order dynamical system with asymptotically vanishing damping term. The system is formulated in terms of the augmented Lagrangian associated to the minimization problem. We show fast convergence of the primal-dual gap, the feasibility measure, and the objective function value along the generated trajectories. In case the objective function has Lipschitz continuous gradient, we show that the primal-dual trajectory asymptotically weakly converges to a primal-dual optimal solution of the underlying minimization problem. To the best of our knowledge, this is the first result which guarantees the convergence of the trajectory generated by a primal-dual dynamical system with asymptotic vanishing damping. Moreover, we will rediscover in case of the unconstrained minimization of a convex differentiable function with Lipschitz continuous gradient all convergence statements obtained in the literature for Nesterovs accelerated gradient method.

Download