Do you want to publish a course? Click here

Lossless Point Cloud Attribute Compression with Normal-based Intra Prediction

118   0   0.0 ( 0 )
 Added by Qian Yin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The sparse LiDAR point clouds become more and more popular in various applications, e.g., the autonomous driving. However, for this type of data, there exists much under-explored space in the corresponding compression framework proposed by MPEG, i.e., geometry-based point cloud compression (G-PCC). In G-PCC, only the distance-based similarity is considered in the intra prediction for the attribute compression. In this paper, we propose a normal-based intra prediction scheme, which provides a more efficient lossless attribute compression by introducing the normals of point clouds. The angle between normals is used to further explore accurate local similarity, which optimizes the selection of predictors. We implement our method into the G-PCC reference software. Experimental results over LiDAR acquired datasets demonstrate that our proposed method is able to deliver better compression performance than the G-PCC anchor, with $2.1%$ gains on average for lossless attribute coding.



rate research

Read More

Most data is automatically collected and only ever seen by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate required to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than $1000times$ on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.
Compression of point clouds has so far been confined to coding the positions of a discrete set of points in space and the attributes of those discrete points. We introduce an alternative approach based on volumetric functions, which are functions defined not just on a finite set of points, but throughout space. As in regression analysis, volumetric functions are continuous functions that are able to interpolate values on a finite set of points as linear combinations of continuous basis functions. Using a B-spline wavelet basis, we are able to code volumetric functions representing both geometry and attributes. Geometry is represented implicitly as the level set of a volumetric function (the signed distance function or similar). Attributes are represented by a volumetric function whose coefficients can be regarded as a critically sampled orthonormal transform that generalizes the recent successful region-adaptive hierarchical (or Haar) transform to higher orders. Experimental results show that both geometry and attribute compression using volumetric functions improve over those used in the emerging MPEG Point Cloud Compression standard.
We present an efficient voxelization method to encode the geometry and attributes of 3D point clouds obtained from autonomous vehicles. Due to the circular scanning trajectory of sensors, the geometry of LiDAR point clouds is inherently different from that of point clouds captured from RGBD cameras. Our method exploits these specific properties to representing points in cylindrical coordinates instead of conventional Cartesian coordinates. We demonstrate thatRegion Adaptive Hierarchical Transform (RAHT) can be extended to this setting, leading to attribute encoding based on a volumetric partition in cylindrical coordinates. Experimental results show that our proposed voxelization outperforms conventional approaches based on Cartesian coordinates for this type of data. We observe a significant improvement in attribute coding performance with 5-10%reduction in bitrate and octree representation with 35-45% reduction in bits.
We make the following striking observation: fully convolutional VAE models trained on 32x32 ImageNet can generalize well, not just to 64x64 but also to far larger photographs, with no changes to the model. We use this property, applying fully convolutional models to lossless compression, demonstrating a method to scale the VAE-based Bits-Back with ANS algorithm for lossless compression to large color photographs, and achieving state of the art for compression of full size ImageNet images. We release Craystack, an open source library for convenient prototyping of lossless compression using probabilistic models, along with full implementations of all of our compression results.
We introduce a simple and efficient lossless image compression algorithm. We store a low resolution version of an image as raw pixels, followed by several iterations of lossless super-resolution. For lossless super-resolution, we predict the probability of a high-resolution image, conditioned on the low-resolution input, and use entropy coding to compress this super-resolution operator. Super-Resolution based Compression (SReC) is able to achieve state-of-the-art compression rates with practical runtimes on large datasets. Code is available online at https://github.com/caoscott/SReC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا