No Arabic abstract
In this work, we investigate the near horizon and asymptotic symmetries of static and rotating hairy$-$AdS black hole in the framework of general minimal massive gravity. We obtain energy, angular momentum and entropy of the solutions. Then we show that our results for these quantities are consistent with the first law of black hole thermodynamics. By considering the near horizon geometry of black hole, we find near horizon conserved charges and their algebra. By writing the algebra of conserved charges in terms of Fourier modes we have obtained the conserved charges in terms of zero modes.
We study asymptotically flat black holes with massive graviton hair within the ghost-free bigravity theory. There have been contradictory statements in the literature about their existence -- such solutions were reported some time ago, but later a different group claimed the Schwarzschild solution to be the only asymptotically flat black hole in the theory. As a result, the controversy emerged. We have analyzed the issue ourselves and have been able to construct such solutions within a carefully designed numerical scheme. We find that for given parameter values there can be one or two asymptotically flat hairy black holes in addition to the Schwarzschild solution. We analyze their perturbative stability and find that they can be stable or unstable, depending on the parameter values. The masses of stable hairy black holes that would be physically relevant range form stellar values up to values typical for supermassive black holes. One of their two metrics is extremely close to Schwarzschild, while all their hair is hidden in the second metric that is not coupled to matter and not directly seen. If the massive bigravity theory indeed describes physics, the hair of such black holes should manifest themselves in violent processes like black hole collisions and should be visible in the structure of the signals detected by LIGO/VIRGO.
In the context of massive gravity theories, we study holographic flows driven by a relevant scalar operator and interpolating between a UV 3-dimensional CFT and an IR Kasner universe. For a large class of scalar potentials, the Cauchy horizon never forms in presence of a non-trivial scalar hair, although, in absence of it, the black hole solution has an inner horizon due to the finite graviton mass. We show that the instability of the Cauchy horizon triggered by the scalar field is associated to a rapid collapse of the Einstein-Rosen bridge. The corresponding flows run smoothly through the event horizon and at late times end in a spacelike singularity at which the asymptotic geometry takes a general Kasner form dominated by the scalar hair kinetic term. Interestingly, we discover deviations from the simple Kasner universe whenever the potential terms become larger than the kinetic one. Finally, we study the effects of the scalar deformation and the graviton mass on the Kasner singularity exponents and show the relationship between the Kasner exponents and the entanglement and butterfly velocities probing the black hole dynamics.
We do a systematic study of the phases of gravity coupled to an electromagnetic field and charged scalar in flat space, with box boundary conditions. The scalar-less box has previously been investigated by Braden, Brown, Whiting and York (and others) before AdS/CFT and we elaborate and extend their results in a language more familiar from holography. The phase diagram of the system is analogous to that of AdS black holes, but we emphasize the differences and explain their origin. Once the scalar is added, we show that the system admits both boson stars as well as hairy black holes as solutions, providing yet another way to evade flat space no-hair theorems. Furthermore both these solutions can exist as stable phases in regions of the phase diagram. The final picture of the phases that emerges is strikingly similar to that found recently for holographic superconductors in global AdS, arXiv: 1602.07211. Our construction lays bare certain previously unnoticed subtleties associated to the definition quasi-local charges for gravitating scalar fields in finite regions.
We present a class of charged black hole solutions in an ($n+2)$-dimensional massive gravity with a negative cosmological constant, and study thermodynamics and phase structure of the black hole solutions both in grand canonical ensemble and canonical ensemble. The black hole horizon can have a positive, zero or negative constant curvature characterized by constant $k$. By using Hamiltonian approach, we obtain conserved charges of the solutions and find black hole entropy still obeys the area formula and the gravitational field equation at the black hole horizon can be cast into the first law form of black hole thermodynamics. In grand canonical ensemble, we find that thermodynamics and phase structure depends on the combination $k -mu^2/4 +c_2 m^2$ in the four dimensional case, where $mu$ is the chemical potential and $c_2m^2$ is the coefficient of the second term in the potential associated with graviton mass. When it is positive, the Hawking-Page phase transition can happen, while as it is negative, the black hole is always thermodynamically stable with a positive capacity. In canonical ensemble, the combination turns out to be $k+c_2m^2$ in the four dimensional case. When it is positive, a first order phase transition can happen between small and large black holes if the charge is less than its critical one. In higher dimensional ($n+2 ge 5$) case, even when the charge is absent, the small/large black hole phase transition can also appear, the coefficients for the third ($c_3m^2$) and/or the fourth ($c_4m^2$) terms in the potential associated with graviton mass in the massive gravity can play the same role as the charge does in the four dimensional case.
The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters and gravitons mass modify the efficiency of engine on a significant level. Furthermore, it will be shown that it is possible to have the heat engine for non-spherical black holes in massive gravity and we study the effects of topological factor on properties of the heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with hyperbolic horizon, while the lowest one belongs to spherical black holes.