Do you want to publish a course? Click here

Provably Efficient Representation Learning in Low-rank Markov Decision Processes

153   0   0.0 ( 0 )
 Added by Quanquan Gu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The success of deep reinforcement learning (DRL) is due to the power of learning a representation that is suitable for the underlying exploration and exploitation task. However, existing provable reinforcement learning algorithms with linear function approximation often assume the feature representation is known and fixed. In order to understand how representation learning can improve the efficiency of RL, we study representation learning for a class of low-rank Markov Decision Processes (MDPs) where the transition kernel can be represented in a bilinear form. We propose a provably efficient algorithm called ReLEX that can simultaneously learn the representation and perform exploration. We show that ReLEX always performs no worse than a state-of-the-art algorithm without representation learning, and will be strictly better in terms of sample efficiency if the function class of representations enjoys a certain mild coverage property over the whole state-action space.



rate research

Read More

In this paper we present a novel method for learning hierarchical representations of Markov decision processes. Our method works by partitioning the state space into subsets, and defines subtasks for performing transitions between the partitions. We formulate the problem of partitioning the state space as an optimization problem that can be solved using gradient descent given a set of sampled trajectories, making our method suitable for high-dimensional problems with large state spaces. We empirically validate the method, by showing that it can successfully learn a useful hierarchical representation in a navigation domain. Once learned, the hierarchical representation can be used to solve different tasks in the given domain, thus generalizing knowledge across tasks.
159 - Honghao Wei , Xin Liu , Lei Ying 2021
This paper presents the first {em model-free}, {em simulator-free} reinforcement learning algorithm for Constrained Markov Decision Processes (CMDPs) with sublinear regret and zero constraint violation. The algorithm is named Triple-Q because it has three key components: a Q-function (also called action-value function) for the cumulative reward, a Q-function for the cumulative utility for the constraint, and a virtual-Queue that (over)-estimates the cumulative constraint violation. Under Triple-Q, at each step, an action is chosen based on the pseudo-Q-value that is a combination of the three Q values. The algorithm updates the reward and utility Q-values with learning rates that depend on the visit counts to the corresponding (state, action) pairs and are periodically reset. In the episodic CMDP setting, Triple-Q achieves $tilde{cal O}left(frac{1 }{delta}H^4 S^{frac{1}{2}}A^{frac{1}{2}}K^{frac{4}{5}} right)$ regret, where $K$ is the total number of episodes, $H$ is the number of steps in each episode, $S$ is the number of states, $A$ is the number of actions, and $delta$ is Slaters constant. Furthermore, Triple-Q guarantees zero constraint violation when $K$ is sufficiently large. Finally, the computational complexity of Triple-Q is similar to SARSA for unconstrained MDPs and is computationally efficient.
We study reinforcement learning (RL) with linear function approximation where the underlying transition probability kernel of the Markov decision process (MDP) is a linear mixture model (Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2020) and the learning agent has access to either an integration or a sampling oracle of the individual basis kernels. We propose a new Bernstein-type concentration inequality for self-normalized martingales for linear bandit problems with bounded noise. Based on the new inequality, we propose a new, computationally efficient algorithm with linear function approximation named $text{UCRL-VTR}^{+}$ for the aforementioned linear mixture MDPs in the episodic undiscounted setting. We show that $text{UCRL-VTR}^{+}$ attains an $tilde O(dHsqrt{T})$ regret where $d$ is the dimension of feature mapping, $H$ is the length of the episode and $T$ is the number of interactions with the MDP. We also prove a matching lower bound $Omega(dHsqrt{T})$ for this setting, which shows that $text{UCRL-VTR}^{+}$ is minimax optimal up to logarithmic factors. In addition, we propose the $text{UCLK}^{+}$ algorithm for the same family of MDPs under discounting and show that it attains an $tilde O(dsqrt{T}/(1-gamma)^{1.5})$ regret, where $gammain [0,1)$ is the discount factor. Our upper bound matches the lower bound $Omega(dsqrt{T}/(1-gamma)^{1.5})$ proved by Zhou et al. (2020) up to logarithmic factors, suggesting that $text{UCLK}^{+}$ is nearly minimax optimal. To the best of our knowledge, these are the first computationally efficient, nearly minimax optimal algorithms for RL with linear function approximation.
We consider online learning for minimizing regret in unknown, episodic Markov decision processes (MDPs) with continuous states and actions. We develop variants of the UCRL and posterior sampling algorithms that employ nonparametric Gaussian process priors to generalize across the state and action spaces. When the transition and reward functions of the true MDP are members of the associated Reproducing Kernel Hilbert Spaces of functions induced by symmetric psd kernels (frequentist setting), we show that the algorithms enjoy sublinear regret bounds. The bounds are in terms of explicit structural parameters of the kernels, namely a novel generalization of the information gain metric from kernelized bandit, and highlight the influence of transition and reward function structure on the learning performance. Our results are applicable to multidimensional state and action spaces with composite kernel structures, and generalize results from the literature on kernelized bandits, and the adaptive control of parametric linear dynamical systems with quadratic costs.
We study reinforcement learning (RL) with linear function approximation under the adaptivity constraint. We consider two popular limited adaptivity models: batch learning model and rare policy switch model, and propose two efficient online RL algorithms for linear Markov decision processes. In specific, for the batch learning model, our proposed LSVI-UCB-Batch algorithm achieves an $tilde O(sqrt{d^3H^3T} + dHT/B)$ regret, where $d$ is the dimension of the feature mapping, $H$ is the episode length, $T$ is the number of interactions and $B$ is the number of batches. Our result suggests that it suffices to use only $sqrt{T/dH}$ batches to obtain $tilde O(sqrt{d^3H^3T})$ regret. For the rare policy switch model, our proposed LSVI-UCB-RareSwitch algorithm enjoys an $tilde O(sqrt{d^3H^3T[1+T/(dH)]^{dH/B}})$ regret, which implies that $dHlog T$ policy switches suffice to obtain the $tilde O(sqrt{d^3H^3T})$ regret. Our algorithms achieve the same regret as the LSVI-UCB algorithm (Jin et al., 2019), yet with a substantially smaller amount of adaptivity.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا