Do you want to publish a course? Click here

First experimental search for production of magnetic monopoles via the Schwinger mechanism

196   0   0.0 ( 0 )
 Added by Igor Ostrovskiy
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Schwinger showed that electrically-charged particles can be produced in a strong electric field by quantum tunnelling through the Coulomb barrier. By electromagnetic duality, if magnetic monopoles (MMs) exist, they would be produced by the same mechanism in a sufficiently strong magnetic field. Unique advantages of the Schwinger mechanism are that its rate can be calculated using semiclassical techniques without relying on perturbation theory, and the finite MM size and strong MM-photon coupling are expected to enhance their production. Pb-Pb heavy-ion collisions at the LHC produce the strongest known magnetic fields in the current Universe, and this article presents the first search for MM production by the Schwinger mechanism. It was conducted by the MoEDAL experiment during the 5.02 TeV/nucleon heavy-ion run at the LHC in November 2018, during which the MoEDAL trapping detectors (MMTs) were exposed to 0.235 nb$^{-1}$ of Pb-Pb collisions. The MMTs were scanned for the presence of magnetic charge using a SQUID magnetometer. MMs with Dirac charges 1$g_D$ $leq$ $g$ $leq$ 3$g_D$ and masses up to 75 GeV/c$^2$ were excluded by the analysis. This provides the first lower mass limit for finite-size MMs from a collider search and significantly extends previous mass bounds.



rate research

Read More

109 - Gouranga C. Nayak 2005
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunneling result, which depends only on one gauge invariant quantity |E|, the strength of the chromo-electric field, we find that the exact result for the p_T distribution for quark (antiquark) production rate depends on two independent Casimir (gauge) invariants, E^aE^a and [d_{abc}E^aE^bE^c]^2.
MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC run-1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV $pp$ collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
We report a search for a magnetic monopole component of the cosmic-ray flux in a 95-day exposure of the NOvA experiments Far Detector, a 14 kt segmented liquid scintillator detector designed primarily to observe GeV-scale electron neutrinos. No events consistent with monopoles were observed, setting an upper limit on the flux of $2times 10^{-14} mathrm{cm^{-2}s^{-1}sr^{-1}}$ at 90% C.L. for monopole speed $6times 10^{-4} < beta < 5times 10^{-3}$ and mass greater than $5times 10^{8}$ GeV. Because of NOvAs small overburden of 3 meters-water equivalent, this constraint covers a previously unexplored low-mass region.
We develop topological criteria for the existence of electroweak magnetic monopoles and Z-strings and extend the Kibble mechanism to study their formation during the electroweak phase transition. The distribution of magnetic monopoles produces magnetic fields that have a spectrum $B_lambda propto lambda^{-2}$ where $lambda$ is a smearing length scale. Even as the magnetic monopoles annihilate due to the confining Z-strings, the magnetic field evolves with the turbulent plasma and may be relevant for cosmological observations.
We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222~kg of aluminium samples, was exposed to 2.11~fb$^{-1}$ of 13 TeV proton-proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell-Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, we also consider couplings with momentum-dependent form factors. The search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا