No Arabic abstract
We study the stochastic cubic nonlinear wave equation (SNLW) with an additive noise on the three-dimensional torus $mathbb{T}^3$. In particular, we prove local well-posedness of the (renormalized) SNLW when the noise is almost a space-time white noise. In recent years, the paracontrolled calculus has played a crucial role in the well-posedness study of singular SNLW on $mathbb{T}^3$ by Gubinelli, Koch, and the first author (2018), Okamoto, Tolomeo, and the first author (2020), and Bringmann (2020). Our approach, however, does not rely on the paracontrolled calculus. We instead proceed with the second order expansion and study the resulting equation for the residual term, using multilinear dispersive smoothing.
We consider the two-dimensional stochastic damped nonlinear wave equation (SdNLW) with the cubic nonlinearity, forced by a space-time white noise. In particular, we investigate the limiting behavior of solutions to SdNLW with regularized noises and establish triviality results in the spirit of the work by Hairer, Ryser, and Weber (2012). More precisely, without renormalization of the nonlinearity, we establish the following two limiting behaviors; (i) in the strong noise regime, we show that solutions to SdNLW with regularized noises tend to 0 as the regularization is removed and (ii) in the weak noise regime, we show that solutions to SdNLW with regularized noises converge to a solution to a deterministic damped nonlinear wave equation with an additional mass term.
We study the stochastic cubic complex Ginzburg-Landau equation with complex-valued space-time white noise on the three dimensional torus. This nonlinear equation is so singular that it can only be under- stood in a renormalized sense. In the first half of this paper we prove local well-posedness of this equation in the framework of regularity structure theory. In the latter half we prove local well-posedness in the framework of paracontrolled distribution theory.
We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (i) By introducing a hybrid argument, combining the $I$-method in the stochastic setting with a Gronwall-type argument, we first prove global well-posedness of the (renormalized) cubic SNLW in the defocusing case. Our argument yields a double exponential growth bound on the Sobolev norm of a solution. (ii) We then study the stochastic damped nonlinear wave equations (SdNLW) in the defocusing case. In particular, by applying Bourgains invariant measure argument, we prove almost sure global well-posedness of the (renormalized) defocusing SdNLW with respect to the Gibbs measure and invariance of the Gibbs measure.
We study the stochastic viscous nonlinear wave equations (SvNLW) on $mathbb T^2$, forced by a fractional derivative of the space-time white noise $xi$. In particular, we consider SvNLW with the singular additive forcing $D^frac{1}{2}xi$ such that solutions are expected to be merely distributions. By introducing an appropriate renormalization, we prove local well-posedness of SvNLW. By establishing an energy bound via a Yudovich-type argument, we also prove global well-posedness of the defocusing cubic SvNLW. Lastly, in the defocusing case, we prove almost sure global well-posedness of SvNLW with respect to certain Gaussian random initial data.
In this paper, we consider the following three dimensional defocusing cubic nonlinear Schrodinger equation (NLS) with partial harmonic potential begin{equation*}tag{NLS} ipartial_t u + left(Delta_{mathbb{R}^3 }-x^2 right) u = |u|^2 u, quad u|_{t=0} = u_0. end{equation*} Our main result shows that the solution $u$ scatters for any given initial data $u_0$ with finite mass and energy. The main new ingredient in our approach is to approximate (NLS) in the large-scale case by a relevant dispersive continuous resonant (DCR) system. The proof of global well-posedness and scattering of the new (DCR) system is greatly inspired by the fundamental works of Dodson cite{D3,D1,D2} in his study of scattering for the mass-critical nonlinear Schrodinger equation. The analysis of (DCR) system allows us to utilize the additional regularity of the smooth nonlinear profile so that the celebrated concentration-compactness/rigidity argument of Kenig and Merle applies.