Do you want to publish a course? Click here

Knowing How to Plan

121   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2021
and research's language is English
 Authors Yanjun Li




Ask ChatGPT about the research

Various planning-based know-how logics have been studied in the recent literature. In this paper, we use such a logic to do know-how-based planning via model checking. In particular, we can handle the higher-order epistemic planning involving know-how formulas as the goal, e.g., find a plan to make sure p such that the adversary does not know how to make p false in the future. We give a PTIME algorithm for the model checking problem over finite epistemic transition systems and axiomatize the logic under the assumption of perfect recall.



rate research

Read More

196 - Pavel Naumov 2017
The existence of a coalition strategy to achieve a goal does not necessarily mean that the coalition has enough information to know how to follow the strategy. Neither does it mean that the coalition knows that such a strategy exists. The paper studies an interplay between the distributed knowledge, coalition strategies, and coalition know-how strategies. The main technical result is a sound and complete trimodal logical system that describes the properties of this interplay.
75 - Hector Geffner 2021
Recent breakthroughs in AI have shown the remarkable power of deep learning and deep reinforcement learning. These developments, however, have been tied to specific tasks, and progress in out-of-distribution generalization has been limited. While it is assumed that these limitations can be overcome by incorporating suitable inductive biases, the notion of inductive biases itself is often left vague and does not provide meaningful guidance. In the paper, I articulate a different learning approach where representations do not emerge from biases in a neural architecture but are learned over a given target language with a known semantics. The basic ideas are implicit in mainstream AI where representations have been encoded in languages ranging from fragments of first-order logic to probabilistic structural causal models. The challenge is to learn from data, the representations that have traditionally been crafted by hand. Generalization is then a result of the semantics of the language. The goals of the paper and talk are to make these ideas explicit, to place them in a broader context where the design of the target language is crucial, and to illustrate them in the context of learning to act and plan. For this, after a general discussion, I consider learning representations of actions, general policies, and general decompositions. In these cases, learning is formulated as a combinatorial optimization problem but nothing prevents the use deep learning techniques instead. Indeed, learning representations over languages with a known semantics provides an account of what is to be learned, while learning representations with neural nets provides a complementary account of how representations can be learned. The challenge and the opportunity is to bring the two together.
Traditional automated theorem provers have relied on manually tuned heuristics to guide how they perform proof search. Recently, however, there has been a surge of interest in the design of learning mechanisms that can be integrated into theorem provers to improve their performance automatically. In this work, we introduce TRAIL, a deep learning-based approach to theorem proving that characterizes core elements of saturation-based theorem proving within a neural framework. TRAIL leverages (a) an effective graph neural network for representing logical formulas, (b) a novel neural representation of the state of a saturation-based theorem prover in terms of processed clauses and available actions, and (c) a novel representation of the inference selection process as an attention-based action policy. We show through a systematic analysis that these components allow TRAIL to significantly outperform previous reinforcement learning-based theorem provers on two standard benchmark datasets (up to 36% more theorems proved). In addition, to the best of our knowledge, TRAIL is the first reinforcement learning-based approach to exceed the performance of a state-of-the-art traditional theorem prover on a standard theorem proving benchmark (solving up to 17% more problems).
We introduce a new semantics for a multi-agent epistemic operator of knowing how, based on an indistinguishability relation between plans. Our proposal is, arguably, closer to the standard presentation of knowing that modalities in classical epistemic logic. We study the relationship between this semantics and previous approaches, showing that our setting is general enough to capture them. We also define a sound and complete axiomatization, and investigate the computational complexity of its model checking and satisfiability problems.
We introduce and study several notions of approximation for ontology-mediated queries based on the description logics ALC and ALCI. Our approximations are of two kinds: we may (1) replace the ontology with one formulated in a tractable ontology language such as ELI or certain TGDs and (2) replace the database with one from a tractable class such as the class of databases whose treewidth is bounded by a constant. We determine the computational complexity and the relative completeness of the resulting approximations. (Almost) all of them reduce the data complexity from coNP-complete to PTime, in some cases even to fixed-parameter tractable and to linear time. While approximations of kind (1) also reduce the combined complexity, this tends to not be the case for approximations of kind (2). In some cases, the combined complexity even increases.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا