Do you want to publish a course? Click here

A comparative study of model approximation methods applied to economic MPC

113   0   0.0 ( 0 )
 Added by Jinfeng Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Economic model predictive control (EMPC) has attracted significant attention in recent years and is recognized as a promising advanced process control method for the next generation smart manufacturing. It can lead to improving economic performance but at the same time increases the computational complexity significantly. Model approximation has been a standard approach for reducing computational complexity in process control. In this work, we perform a study on three types of representative model approximation methods applied to EMPC, including model reduction based on available first-principle models (e.g., proper orthogonal decomposition), system identification based on input-output data (e.g., subspace identification) that results in an explicitly expressed mathematical model, and neural networks based on input-output data. A representative algorithm from each model approximation method is considered. Two processes that are very different in dynamic nature and complexity were selected as benchmark processes for computational complexity and economic performance comparison, namely an alkylation process and a wastewater treatment plant (WWTP). The strengths and drawbacks of each method are summarized according to the simulation results, with future research direction regarding control oriented model approximation proposed at the end.



rate research

Read More

Adaptive model predictive control (MPC) robustly ensures safety while reducing uncertainty during operation. In this paper, a distributed version is proposed to deal with network systems featuring multiple agents and limited communication. To solve the problem in a distributed manner, structure is imposed on the control design ingredients without sacrificing performance. Decentralized and distributed adaptation schemes that allow for a reduction of the uncertainty online compatibly with the network topology are also proposed. The algorithm ensures robust constraint satisfaction, recursive feasibility and finite gain $ell_2$ stability, and yields lower closed-loop cost compared to robust distributed MPC in simulations.
Most renewable energy sources (RES) do not provide any inertial response. Their integration in a power grid implies a highly reduced level of system inertia, which leads to a deteriorated frequency performance. Then, the requirement for frequency response is significantly increased in order to maintain frequency security. Alternatively, enhanced provision of inertia from auxiliary sources may alleviate this problem. However, the benefits of inertia provision are not yet fully understood. In this paper, an inertia-dependent Stochastic Unit Commitment (SUC) tool is applied to quantify the economic value of inertia. The results demonstrate that enhanced provision of inertia would lead to significant economic savings, although these savings vary under different system conditions. These results should be brought to the attention of both market operators and investors, in order to inform the design of an ancillary-services market for inertia and the investment in auxiliary provision of inertia.
This paper addresses the use of data-driven evolving techniques applied to fault prognostics. In such problems, accurate predictions of multiple steps ahead are essential for the Remaining Useful Life (RUL) estimation of a given asset. The fault prognostics solutions must be able to model the typical nonlinear behavior of the degradation processes of these assets, and be adaptable to each units particularities. In this context, the Evolving Fuzzy Systems (EFSs) are models capable of representing such behaviors, in addition of being able to deal with non-stationary behavior, also present in these problems. Moreover, a methodology to recursively track the models estimation error is presented as a way to quantify uncertainties that are propagated in the long-term predictions. The well-established NASAs Li-ion batteries data set is used to evaluate the models. The experiments indicate that generic EFSs can take advantage of both historical and stream data to estimate the RUL and its uncertainty.
Continued great efforts have been dedicated towards high-quality trajectory generation based on optimization methods, however, most of them do not suitably and effectively consider the situation with moving obstacles; and more particularly, the future position of these moving obstacles in the presence of uncertainty within some possible prescribed prediction horizon. To cater to this rather major shortcoming, this work shows how a variational Bayesian Gaussian mixture model (vBGMM) framework can be employed to predict the future trajectory of moving obstacles; and then with this methodology, a trajectory generation framework is proposed which will efficiently and effectively address trajectory generation in the presence of moving obstacles, and also incorporating presence of uncertainty within a prediction horizon. In this work, the full predictive conditional probability density function (PDF) with mean and covariance is obtained, and thus a future trajectory with uncertainty is formulated as a collision region represented by a confidence ellipsoid. To avoid the collision region, chance constraints are imposed to restrict the collision probability, and subsequently a nonlinear MPC problem is constructed with these chance constraints. It is shown that the proposed approach is able to predict the future position of the moving obstacles effectively; and thus based on the environmental information of the probabilistic prediction, it is also shown that the timing of collision avoidance can be earlier than the method without prediction. The tracking error and distance to obstacles of the trajectory with prediction are smaller compared with the method without prediction.
117 - Yue Song , David J. Hill , Tao Liu 2021
This paper introduces network flexibility into the chance constrained economic dispatch (CCED). In the proposed model, both power generations and line susceptances become variables to minimize the expected generation cost and guarantee a low probability of constraint violation in terms of generations and line flows under renewable uncertainties. We figure out the mechanism of network flexibility against uncertainties from the analytical form of CCED. On one hand, renewable uncertainties shrink the usable line capacities in the line flow constraints and aggravate transmission congestion. On the other hand, network flexibility significantly mitigates congestion by regulating the base-case line flows and reducing the line capacity shrinkage caused by uncertainties. Further, we propose an alternate iteration solver for this problem, which is efficient. With duality theory, we propose two convex subproblems with respect to generation-related variables and network-related variables, respectively. A satisfactory solution can be obtained by alternately solving these two subproblems. The case studies on the IEEE 14-bus system and IEEE 118-bus system suggest that network flexibility contributes much to operational economy under renewable uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا