No Arabic abstract
Particle acceleration to suprathermal energies in strong astrophysical shock waves is a widespread phenomenon, generally explained by diffusive shock acceleration. Such shocks can also amplify upstream magnetic field considerably beyond simple compression. The complex plasma physics processes involved are often parameterized by assuming that shocks put some fraction $epsilon_e$ of their energy into fast particles, and another fraction $epsilon_B$ into magnetic field. Modelers of shocks in supernovae, supernova remnants, and gamma-ray bursters, among other locations, often assume typical values for these fractions, presumed to remain constant in time. However, it is rare that enough properties of a source are independently constrained that values of the epsilons can be inferred directly. Supernova remnants (SNRs) can provide such circumstances. Here we summarize results from global fits to spatially integrated emission in six young SNRs, finding $10^{-4} le epsilon_e le 0.05$ and $0.001 le epsilon_B le 0.1$. These large variations might be put down to the differing ages and environments of these SNRs, so we conduct a detailed analysis of a single remnant, that of Keplers supernova. Both epsilons can be determined at seven different locations around the shock, and we find even larger ranges for both epsilons, as well as for their ratio (thus independent of the shock energy itself). We conclude that unknown factors have a large influence on the efficiency of both processes. Shock obliquity, upstream neutral fraction, or other possibilities need to be explored, while calculations assuming fixed values of the epsilons should be regarded as provisional.
Supernova 1604 is the last Galactic supernova for which historical records exist. Johannes Keplers name is attached to it, as he published a detailed account of the observations made by himself and European colleagues. Supernova 1604 was very likely a Type Ia supernova, which exploded 350 pc to 750 pc above the Galactic plane. Its supernova remnant, known as Keplers supernova remnant, shows clear evidence for interaction with nitrogen-rich material in the north/northwest part of the remnant, which, given the height above the Galactic plane, must find its origin in mass loss from the supernova progenitor system. The combination of a Type Ia supernova and the presence of circumstellar material makes Keplers supernova remnant a unique object to study the origin of Type Ia supernovae. The evidence suggests that the progenitor binary system of supernova 1604 consisted of a carbon- oxygen white dwarf and an evolved companion star, which most likely was in the (post) asymptotic giant branch of its evolution. A problem with this scenario is that the companion star must have survived the explosion, but no trace of its existence has yet been found, despite a deep search. 1 Introduction; 2 The supernova remnant, its distance and multiwavelength properties; 2.1 Position, distance estimates and SN1604 as a runaway system; 2.2 X-ray imaging spectroscopy and SN1604 as a Type Ia supernova 2.3 The circumstellar medium as studied in the optical and infrared; 3 The dynamics of Keplers SNR; 3.1 Velocity measurements; 3.2 Hydrodynamical simulations; 4 The progenitor system of SN 1604; 4.1 Elevated circumstellar nitrogen abundances, silicates and a single degenerate scenario for SN1604; 4.2 Problems with a single degenerate Type Ia scenario for SN 1604; 4.3 Was SN 1604 a core-degenerate Type Ia explosion?; 4.4 What can we learn from the historical light curve of SN 1604? ; 5 Conclusions
A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfv{e}nic drift are needed to explain the rather soft radio spectrum and the narrow rims observed for Tychos SNR. We show that the broadband spectrum of Tychos SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfv{e}nic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. We solve the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field is either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard DSA, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength $sim330,mathrm{mu G}$, implying efficient amplification even for the magnetic-field damping scenario. For the formation of the filaments in the radio range magnetic-field damping is necessary, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.
The present article investigates magnetic amplification in the upstream medium of SNR blast wave through both resonant and non-resonant regimes of the streaming instability. It aims at a better understanding of the diffusive shock acceleration (DSA) efficiency considering various relaxation processes of the magnetic fluctuations in the downstream medium. Multi-wavelength radiative signatures coming from the SNR shock wave are used in order to put to the test the different downstream turbulence relaxation models. We confirm the result of Parizot et al (2006) that the maximum CR energies should not go well beyond PeV energies in young SNRs where X-ray filaments are observed. In order to match observational data, we derive an upper limit on the magnetic field amplitude insuring that stochastic particle reacceleration remain inefficient. Considering then, various magnetic relaxation processes, we present two necessary conditions to achieve efficient acceleration and X-ray filaments in SNRs: 1/the turbulence must fulfil the inequality $2-beta-delta_{rm d} ge 0$ where $beta$ is the turbulence spectral index while $delta_d$ is the relaxation length energy power-law index; 2/the typical relaxation length has to be of the order the X-ray rim size. We identify that Alvenic/fast magnetosonic mode damping does fulfil all conditions while non-linear Kolmogorov damping does not. Confronting previous relaxation processes to observational data, we deduct that among our SNR sample, the older ones (SN1006 & G347.3-0.5) fail to verify all conditions which means that their X-ray filaments are likely controlled by radiative losses. The younger SNRs, Cas A, Tycho and Kepler, do pass all tests and we infer that the downstream magnetic field amplitude is lying in the range of 200-300 $mu$ Gauss.
For more than fifty years, it has been believed that cosmic ray (CR) nuclei are accelerated to high energies in the rapidly expanding shockwaves created by powerful supernova explosions. Yet observational proof of this conjecture is still lacking. Recently, Uchiyama and collaborators reported the detection of small-scale X-ray flares in one such supernova remnant, dubbed RX J1713-3946 (a.k.a. G347.3-0.5), which also emits very energetic, TeV (10^12 eV) range, gamma-rays. They contend that the variability of these X-ray hotspots implies that the magnetic field in the remnant is about a hundred times larger than normally assumed; and this, they say, means that the detected TeV range photons were produced in energetic nuclear interactions, providing a strong argument for acceleration of protons and nuclei to energies of 1 PeV (10^15 eV) and beyond in young supernova remnants. We point out here that the existing multiwavelength data on this object certainly do not support such conclusions. Though intriguing, the small-scale X-ray flares are not the long sought-after smoking gun of nucleonic CR acceleration in SNRs.
It is widely believe that galactic cosmic rays are originated in supernova remnants (SNRs) where they are accelerated by diffusive shock acceleration process at supernova blast waves driven by expanding SNRs. In recent theoretical developments of the diffusive shock acceleration theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are true generator of cosmic rays, they should accelerate not only protons but also heavier nuclei with right proportion and the maximum energy of heavier nuclei should be atomic mass (Z) times that of protons. In this work we investigate the implications of acceleration of heavier nuclei in SNRs on energetic gamma rays those are produced in hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition instead of pure protons to explain the observation and secondly the gamma ray flux above few tens of TeV would be significantly higher if cosmic rays particles can attain energies Z times of the knee energy in lieu of 200 TeV, as suggested earlier for non-amplified magnetic fields. The two stated maximum energy paradigm will be discriminated in future by the upcoming gamma ray experiments like Cherenkov Telescope array (CTA).