No Arabic abstract
Machine intelligence can develop either directly from experience or by inheriting experience through evolution. The bulk of current research efforts focus on algorithms which learn directly from experience. I argue that the alternative, evolution, is important to the development of machine intelligence and underinvested in terms of research allocation. The primary aim of this work is to assess where along the spectrum of evolutionary algorithms to invest in research. My first-order suggestion is to diversify research across a broader spectrum of evolutionary approaches. I also define meta-evolutionary algorithms and argue that they may yield an optimal trade-off between the many factors influencing the development of machine intelligence.
This article reviews the Once learning mechanism that was proposed 23 years ago and the subsequent successes of One-shot learning in image classification and You Only Look Once - YOLO in objective detection. Analyzing the current development of Artificial Intelligence (AI), the proposal is that AI should be clearly divided into the following categories: Artificial Human Intelligence (AHI), Artificial Machine Intelligence (AMI), and Artificial Biological Intelligence (ABI), which will also be the main directions of theory and application development for AI. As a watershed for the branches of AI, some classification standards and methods are discussed: 1) Human-oriented, machine-oriented, and biological-oriented AI R&D; 2) Information input processed by Dimensionality-up or Dimensionality-reduction; 3) The use of one/few or large samples for knowledge learning.
Swarm intelligence is the collective behavior emerging in systems with locally interacting components. Because of their self-organization capabilities, swarm-based systems show essential properties for handling real-world problems such as robustness, scalability, and flexibility. Yet, we do not know why swarm-based algorithms work well and neither we can compare the different approaches in the literature. The lack of a common framework capable of characterizing these several swarm-based algorithms, transcending their particularities, has led to a stream of publications inspired by different aspects of nature without a systematic comparison over existing approaches. Here, we address this gap by introducing a network-based framework---the interaction network---to examine computational swarm-based systems via the optics of the social dynamics of such interaction network; a clear example of network science being applied to bring further clarity to a complicated field within artificial intelligence. We discuss the social interactions of four well-known swarm-based algorithms and provide an in-depth case study of the Particle Swarm Optimization. The interaction network enables researchers to study swarm algorithms as systems, removing the algorithm particularities from the analyses while focusing on the structure of the social interactions.
While Moores law has driven exponential computing power expectations, its nearing end calls for new avenues for improving the overall system performance. One of these avenues is the exploration of new alternative brain-inspired computing architectures that promise to achieve the flexibility and computational efficiency of biological neural processing systems. Within this context, neuromorphic intelligence represents a paradigm shift in computing based on the implementation of spiking neural network architectures tightly co-locating processing and memory. In this paper, we provide a comprehensive overview of the field, highlighting the different levels of granularity present in existing silicon implementations, comparing approaches that aim at replicating natural intelligence (bottom-up) versus those that aim at solving practical artificial intelligence applications (top-down), and assessing the benefits of the different circuit design styles used to achieve these goals. First, we present the analog, mixed-signal and digital circuit design styles, identifying the boundary between processing and memory through time multiplexing, in-memory computation and novel devices. Next, we highlight the key tradeoffs for each of the bottom-up and top-down approaches, survey their silicon implementations, and carry out detailed comparative analyses to extract design guidelines. Finally, we identify both necessary synergies and missing elements required to achieve a competitive advantage for neuromorphic edge computing over conventional machine-learning accelerators, and outline the key elements for a framework toward neuromorphic intelligence.
Artificial neural networks (ANNs), while exceptionally useful for classification, are vulnerable to misdirection. Small amounts of noise can significantly affect their ability to correctly complete a task. Instead of generalizing concepts, ANNs seem to focus on surface statistical regularities in a given task. Here we compare how recurrent artificial neural networks, long short-term memory units, and Markov Brains sense and remember their environments. We show that information in Markov Brains is localized and sparsely distributed, while the other neural network substrates smear information about the environment across all nodes, which makes them vulnerable to noise.
Lifelong learning capabilities are crucial for artificial autonomous agents operating on real-world data, which is typically non-stationary and temporally correlated. In this work, we demonstrate that dynamically grown networks outperform static networks in incremental learning scenarios, even when bounded by the same amount of memory in both cases. Learning is unsupervised in our models, a condition that additionally makes training more challenging whilst increasing the realism of the study, since humans are able to learn without dense manual annotation. Our results on artificial neural networks reinforce that structural plasticity constitutes effective prevention against catastrophic forgetting in non-stationary environments, as well as empirically supporting the importance of neurogenesis in the mammalian brain.