We introduce two data completion algorithms for the limited-aperture problems in inverse acoustic scattering. Both completion algorithms are independent of the topological and physical properties of the unknown scatterers. The main idea is to relate the limited-aperture data to the full-aperture data via the prolate matrix. The data completion algorithms are simple and fast since only the approximate inversion of the prolate matrix is involved. We then combine the data completion algorithms with imaging methods such as factorization method and direct sampling method for the object reconstructions. A variety of numerical examples are presented to illustrate the effectiveness and robustness of the proposed algorithms.
Inverse scattering problems have many important applications. In this paper, given limited aperture data, we propose a Bayesian method for the inverse acoustic scattering to reconstruct the shape of an obstacle. The inverse problem is formulated as a statistical model using the Bayes formula. The well-posedness is proved in the sense of the Hellinger metric. The extended sampling method is modified to provide the initial guess of the target location, which is critical to the fast convergence of the MCMC algorithm. An extensive numerical study is presented to illustrate the performance of the proposed method.
In this paper we consider the inverse electromagnetic scattering for a cavity surrounded by an inhomogeneous medium in three dimensions. The measurements are scattered wave fields measured on some surface inside the cavity, where such scattered wave fields are due to sources emitted on the same surface. We first prove that the measurements uniquely determine the shape of the cavity, where we make use of a boundary value problem called the exterior transmission problem. We then complete the inverse scattering problem by designing the linear sampling method to reconstruct the cavity. Numerical examples are further provided to illustrate the viability of our algorithm.
We consider an acoustic obstacle reconstruction problem with Poisson data. Due to the stochastic nature of the data, we tackle this problem in the framework of Bayesian inversion. The unknown obstacle is parameterized in its angular form. The prior for the parameterized unknown plays key role in the Bayes reconstruction algorithm. The most popular used prior is the Gaussian. Under the Gaussian prior assumption, we further suppose that the unknown satisfies the total variation prior. With the hybrid prior, the well-posedness of the posterior distribution is discussed. The numerical examples verify the effectiveness of the proposed algorithm.
The design of online algorithms has tended to focus on algorithms with worst-case guarantees, e.g., bounds on the competitive ratio. However, it is well-known that such algorithms are often overly pessimistic, performing sub-optimally on non-worst-case inputs. In this paper, we develop an approach for data-driven design of online algorithms that maintain near-optimal worst-case guarantees while also performing learning in order to perform well for typical inputs. Our approach is to identify policy classes that admit global worst-case guarantees, and then perform learning using historical data within the policy classes. We demonstrate the approach in the context of two classical problems, online knapsack and online set cover, proving competitive bounds for rich policy classes in each case. Additionally, we illustrate the practical implications via a case study on electric vehicle charging.
We consider the problem of computing the rank of an m x n matrix A over a field. We present a randomized algorithm to find a set of r = rank(A) linearly independent columns in ~O(|A| + r^omega) field operations, where |A| denotes the number of nonzero entries in A and omega < 2.38 is the matrix multiplication exponent. Previously the best known algorithm to find a set of r linearly independent columns is by Gaussian elimination, with running time O(mnr^{omega-2}). Our algorithm is faster when r < max(m,n), for instance when the matrix is rectangular. We also consider the problem of computing the rank of a matrix dynamically, supporting the operations of rank one updates and additions and deletions of rows and columns. We present an algorithm that updates the rank in ~O(mn) field operations. We show that these algorithms can be used to obtain faster algorithms for various problems in numerical linear algebra, combinatorial optimization and dynamic data structure.
Fangfang Dou
,Xiaodong Liu
,Shixu Meng
.
(2021)
.
"Data completion algorithms and their applications in inverse acoustic scattering with limited-aperture backscattering data"
.
Xiaodong Liu
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا