Anharmonicity-induced excited-state quantum phase transition in the symmetric phase of the two-dimensional limit of the vibron model


Abstract in English

In most cases, excited state quantum phase transitions can be associated with the existence of critical points (local extrema or saddle points) in a systems classical limit energy functional. However, an excited-state quantum phase transition might also stem from the lowering of the asymptotic energy of the corresponding energy functional. One such example takes place in the 2D vibron model, once an anharmonic term in the form of a quadratic bosonic number operator is added to the Hamiltonian. The study of this case in the broken-symmetry phase was presented in Phys. Rev. A. 81 050101 (2010). In the present work, we delve further into the nature of this excited-state quantum phase transition and we characterize it in the, previously overlooked, symmetric phase of the model.

Download