Normalized Gradient Descent for Variational Quantum Algorithms


Abstract in English

Variational quantum algorithms (VQAs) are promising methods that leverage noisy quantum computers and classical computing techniques for practical applications. In VQAs, the classical optimizers such as gradient-based optimizers are utilized to adjust the parameters of the quantum circuit so that the objective function is minimized. However, they often suffer from the so-called vanishing gradient or barren plateau issue. On the other hand, the normalized gradient descent (NGD) method, which employs the normalized gradient vector to update the parameters, has been successfully utilized in several optimization problems. Here, we study the performance of the NGD methods in the optimization of VQAs for the first time. Our goal is two-fold. The first is to examine the effectiveness of NGD and its variants for overcoming the vanishing gradient problems. The second is to propose a new NGD that can attain the faster convergence than the ordinary NGD. We performed numerical simulations of these gradient-based optimizers in the context of quantum chemistry where VQAs are used to find the ground state of a given Hamiltonian. The results show the effective convergence property of the NGD methods in VQAs, compared to the relevant optimizers without normalization. Moreover, we make use of some normalized gradient vectors at the past iteration steps to propose the novel historical NGD that has a theoretical guarantee to accelerate the convergence speed, which is observed in the numerical experiments as well.

Download