Do you want to publish a course? Click here

Confidence-Guided Radiology Report Generation

121   0   0.0 ( 0 )
 Added by Yixin Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Medical imaging plays a pivotal role in diagnosis and treatment in clinical practice. Inspired by the significant progress in automatic image captioning, various deep learning (DL)-based architectures have been proposed for generating radiology reports for medical images. However, model uncertainty (i.e., model reliability/confidence on report generation) is still an under-explored problem. In this paper, we propose a novel method to explicitly quantify both the visual uncertainty and the textual uncertainty for the task of radiology report generation. Such multi-modal uncertainties can sufficiently capture the model confidence scores at both the report-level and the sentence-level, and thus they are further leveraged to weight the losses for achieving more comprehensive model optimization. Our experimental results have demonstrated that our proposed method for model uncertainty characterization and estimation can provide more reliable confidence scores for radiology report generation, and our proposed uncertainty-weighted losses can achieve more comprehensive model optimization and result in state-of-the-art performance on a public radiology report dataset.

rate research

Read More

131 - Fenglin Liu , Xian Wu , Shen Ge 2021
Automatically generating radiology reports can improve current clinical practice in diagnostic radiology. On one hand, it can relieve radiologists from the heavy burden of report writing; On the other hand, it can remind radiologists of abnormalities and avoid the misdiagnosis and missed diagnosis. Yet, this task remains a challenging job for data-driven neural networks, due to the serious visual and textual data biases. To this end, we propose a Posterior-and-Prior Knowledge Exploring-and-Distilling approach (PPKED) to imitate the working patterns of radiologists, who will first examine the abnormal regions and assign the disease topic tags to the abnormal regions, and then rely on the years of prior medical knowledge and prior working experience accumulations to write reports. Thus, the PPKED includes three modules: Posterior Knowledge Explorer (PoKE), Prior Knowledge Explorer (PrKE) and Multi-domain Knowledge Distiller (MKD). In detail, PoKE explores the posterior knowledge, which provides explicit abnormal visual regions to alleviate visual data bias; PrKE explores the prior knowledge from the prior medical knowledge graph (medical knowledge) and prior radiology reports (working experience) to alleviate textual data bias. The explored knowledge is distilled by the MKD to generate the final reports. Evaluated on MIMIC-CXR and IU-Xray datasets, our method is able to outperform previous state-of-the-art models on these two datasets.
Gathering manually annotated images for the purpose of training a predictive model is far more challenging in the medical domain than for natural images as it requires the expertise of qualified radiologists. We therefore propose to take advantage of past radiological exams (specifically, knee X-ray examinations) and formulate a framework capable of learning the correspondence between the images and reports, and hence be capable of generating diagnostic reports for a given X-ray examination consisting of an arbitrary number of image views. We demonstrate how aggregating the image features of individual exams and using them as conditional inputs when training a language generation model results in auto-generated exam reports that correlate well with radiologist-generated reports.
100 - Yu Zeng , Zhe Lin , Jimei Yang 2020
Existing image inpainting methods often produce artifacts when dealing with large holes in real applications. To address this challenge, we propose an iterative inpainting method with a feedback mechanism. Specifically, we introduce a deep generative model which not only outputs an inpainting result but also a corresponding confidence map. Using this map as feedback, it progressively fills the hole by trusting only high-confidence pixels inside the hole at each iteration and focuses on the remaining pixels in the next iteration. As it reuses partial predictions from the previous iterations as known pixels, this process gradually improves the result. In addition, we propose a guided upsampling network to enable generation of high-resolution inpainting results. We achieve this by extending the Contextual Attention module to borrow high-resolution feature patches in the input image. Furthermore, to mimic real object removal scenarios, we collect a large object mask dataset and synthesize more realistic training data that better simulates user inputs. Experiments show that our method significantly outperforms existing methods in both quantitative and qualitative evaluations. More results and Web APP are available at https://zengxianyu.github.io/iic.
Inspired by Curriculum Learning, we propose a consecutive (i.e., image-to-text-to-text) generation framework where we divide the problem of radiology report generation into two steps. Contrary to generating the full radiology report from the image at once, the model generates global concepts from the image in the first step and then reforms them into finer and coherent texts using a transformer architecture. We follow the transformer-based sequence-to-sequence paradigm at each step. We improve upon the state-of-the-art on two benchmark datasets.
Video salient object detection (VSOD) aims to locate and segment the most attractive object by exploiting both spatial cues and temporal cues hidden in video sequences. However, spatial and temporal cues are often unreliable in real-world scenarios, such as low-contrast foreground, fast motion, and multiple moving objects. To address these problems, we propose a new framework to adaptively capture available information from spatial and temporal cues, which contains Confidence-guided Adaptive Gate (CAG) modules and Dual Differential Enhancement (DDE) modules. For both RGB features and optical flow features, CAG estimates confidence scores supervised by the IoU between predictions and the ground truths to re-calibrate the information with a gate mechanism. DDE captures the differential feature representation to enrich the spatial and temporal information and generate the fused features. Experimental results on four widely used datasets demonstrate the effectiveness of the proposed method against thirteen state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا