Do you want to publish a course? Click here

Video Summarization through Reinforcement Learning with a 3D Spatio-Temporal U-Net

216   0   0.0 ( 0 )
 Added by Tianrui Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently encode spatio-temporal information of the input videos for downstream reinforcement learning (RL). An RL agent learns from spatio-temporal latent scores and predicts actions for keeping or rejecting a video frame in a video summary. We investigate if real/inflated 3D spatio-temporal CNN features are better suited to learn representations from videos than commonly used 2D image features. Our framework can operate in both, a fully unsupervised mode and a supervised training mode. We analyse the impact of prescribed summary lengths and show experimental evidence for the effectiveness of 3DST-UNet-RL on two commonly used general video summarization benchmarks. We also applied our method on a medical video summarization task. The proposed video summarization method has the potential to save storage costs of ultrasound screening videos as well as to increase efficiency when browsing patient video data during retrospective analysis or audit without loosing essential information



rate research

Read More

Video is an essential imaging modality for diagnostics, e.g. in ultrasound imaging, for endoscopy, or movement assessment. However, video hasnt received a lot of attention in the medical image analysis community. In the clinical practice, it is challenging to utilise raw diagnostic video data efficiently as video data takes a long time to process, annotate or audit. In this paper we introduce a novel, fully automatic video summarization method that is tailored to the needs of medical video data. Our approach is framed as reinforcement learning problem and produces agents focusing on the preservation of important diagnostic information. We evaluate our method on videos from fetal ultrasound screening, where commonly only a small amount of the recorded data is used diagnostically. We show that our method is superior to alternative video summarization methods and that it preserves essential information required by clinical diagnostic standards.
71 - Tianyu Liu 2020
Video summarization aims at generating concise video summaries from the lengthy videos, to achieve better user watching experience. Due to the subjectivity, purely supervised methods for video summarization may bring the inherent errors from the annotations. To solve the subjectivity problem, we study the general user summarization process. General users usually watch the whole video, compare interesting clips and select some clips to form a final summary. Inspired by the general user behaviours, we formulate the summarization process as multiple sequential decision-making processes, and propose Comparison-Selection Network (CoSNet) based on multi-agent reinforcement learning. Each agent focuses on a video clip and constantly changes its focus during the iterations, and the final focus clips of all agents form the summary. The comparison network provides the agent with the visual feature from clips and the chronological feature from the past round, while the selection network of the agent makes decisions on the change of its focus clip. The specially designed unsupervised reward and supervised reward together contribute to the policy advancement, each containing local and global parts. Extensive experiments on two benchmark datasets show that CoSNet outperforms state-of-the-art unsupervised methods with the unsupervised reward and surpasses most supervised methods with the complete reward.
246 - Dezhao Luo , Chang Liu , Yu Zhou 2020
We propose a novel self-supervised method, referred to as Video Cloze Procedure (VCP), to learn rich spatial-temporal representations. VCP first generates blanks by withholding video clips and then creates options by applying spatio-temporal operations on the withheld clips. Finally, it fills the blanks with options and learns representations by predicting the categories of operations applied on the clips. VCP can act as either a proxy task or a target task in self-supervised learning. As a proxy task, it converts rich self-supervised representations into video clip operations (options), which enhances the flexibility and reduces the complexity of representation learning. As a target task, it can assess learned representation models in a uniform and interpretable manner. With VCP, we train spatial-temporal representation models (3D-CNNs) and apply such models on action recognition and video retrieval tasks. Experiments on commonly used benchmarks show that the trained models outperform the state-of-the-art self-supervised models with significant margins.
This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc. Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts.
The attribution method provides a direction for interpreting opaque neural networks in a visual way by identifying and visualizing the input regions/pixels that dominate the output of a network. Regarding the attribution method for visually explaining video understanding networks, it is challenging because of the unique spatiotemporal dependencies existing in video inputs and the special 3D convolutional or recurrent structures of video understanding networks. However, most existing attribution methods focus on explaining networks taking a single image as input and a few works specifically devised for video attribution come short of dealing with diversified structures of video understanding networks. In this paper, we investigate a generic perturbation-based attribution method that is compatible with diversified video understanding networks. Besides, we propose a novel regularization term to enhance the method by constraining the smoothness of its attribution results in both spatial and temporal dimensions. In order to assess the effectiveness of different video attribution methods without relying on manual judgement, we introduce reliable objective metrics which are checked by a newly proposed reliability measurement. We verified the effectiveness of our method by both subjective and objective evaluation and comparison with multiple significant attribution methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا