Do you want to publish a course? Click here

Comparison Theorems for Splittings of M-matrices in (block) Hessenberg Form

66   0   0.0 ( 0 )
 Added by Federico G. Poloni
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Some variants of the (block) Gauss-Seidel iteration for the solution of linear systems with $M$-matrices in (block) Hessenberg form are discussed. Comparison results for the asymptotic convergence rate of some regular splittings are derived: in particular, we prove that for a lower-Hessenberg M-matrix $rho(P_{GS})geq rho(P_S)geq rho(P_{AGS})$, where $P_{GS}, P_S, P_{AGS}$ are the iteration matrices of the Gauss-Seidel, staircase, and anti-Gauss-Seidel method. This is a result that does not seem to follow from classical comparison results, as these splittings are not directly comparable. It is shown that the concept of stair partitioning provides a powerful tool for the design of new variants that are suited for parallel computation.



rate research

Read More

We present fast numerical methods for computing the Hessenberg reduction of a unitary plus low-rank matrix $A=G+U V^H$, where $Gin mathbb C^{ntimes n}$ is a unitary matrix represented in some compressed format using $O(nk)$ parameters and $U$ and $V$ are $ntimes k$ matrices with $k< n$. At the core of these methods is a certain structured decomposition, referred to as a LFR decomposition, of $A$ as product of three possibly perturbed unitary $k$ Hessenberg matrices of size $n$. It is shown that in most interesting cases an initial LFR decomposition of $A$ can be computed very cheaply. Then we prove structural properties of LFR decompositions by giving conditions under which the LFR decomposition of $A$ implies its Hessenberg shape. Finally, we describe a bulge chasing scheme for converting the initial LFR decomposition of $A$ into the LFR decomposition of a Hessenberg matrix by means of unitary transformations. The reduction can be performed at the overall computational cost of $O(n^2 k)$ arithmetic operations using $O(nk)$ storage. The computed LFR decomposition of the Hessenberg reduction of $A$ can be processed by the fast QR algorithm presented in [8] in order to compute the eigenvalues of $A$ within the same costs.
We develop two fast algorithms for Hessenberg reduction of a structured matrix $A = D + UV^H$ where $D$ is a real or unitary $n times n$ diagonal matrix and $U, V inmathbb{C}^{n times k}$. The proposed algorithm for the real case exploits a two--stage approach by first reducing the matrix to a generalized Hessenberg form and then completing the reduction by annihilation of the unwanted sub-diagonals. It is shown that the novel method requires $O(n^2k)$ arithmetic operations and it is significantly faster than other reduction algorithms for rank structured matrices. The method is then extended to the unitary plus low rank case by using a block analogue of the CMV form of unitary matrices. It is shown that a block Lanczos-type procedure for the block tridiagonalization of $Re(D)$ induces a structured reduction on $A$ in a block staircase CMV--type shape. Then, we present a numerically stable method for performing this reduction using unitary transformations and we show how to generalize the sub-diagonal elimination to this shape, while still being able to provide a condensed representation for the reduced matrix. In this way the complexity still remains linear in $k$ and, moreover, the resulting algorithm can be adapted to deal efficiently with block companion matrices.
In this paper we study the linear systems arising from discretized poroelasticity problems. We formulate one block preconditioner for the two-filed Biot model and several preconditioners for the classical three-filed Biot model under the unified relationship framework between well-posedness and preconditioners. By the unified theory, we show all the considered preconditioners are uniformly optimal with respect to material and discretization parameters. Numerical tests demonstrate the robustness of these preconditioners.
242 - Kirk M. Soodhalter 2014
We analyze the the convergence behavior of block GMRES and characterize the phenomenon of stagnation which is then related to the behavior of the block FOM method. We generalize the block FOM method to generate well-defined approximations in the case that block FOM would normally break down, and these generalized solutions are used in our analysis. This behavior is also related to the principal angles between the column-space of the previous block GMRES residual and the current minimum residual constraint space. At iteration $j$, it is shown that the proper generalization of GMRES stagnation to the block setting relates to the columnspace of the $j$th block Arnoldi vector. Our analysis covers both the cases of normal iterations as well as block Arnoldi breakdown wherein dependent basis vectors are replaced with random ones. Numerical examples are given to illustrate what we have proven, including a small application problem to demonstrate the validity of the analysis in a less pathological case.
149 - Chengmei Niu , Hanyu Li 2021
In this paper, we investigate the randomized algorithms for block matrix multiplication from random sampling perspective. Based on the A-optimal design criterion, the optimal sampling probabilities and sampling block sizes are obtained. To improve the practicability of the block sizes, two modified ones with less computation cost are provided. With respect to the second one, a two step algorithm is also devised. Moreover, the probability error bounds for the proposed algorithms are given. Extensive numerical results show that our methods outperform the existing one in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا