Do you want to publish a course? Click here

Unbalanced Feature Transport for Exemplar-based Image Translation

136   0   0.0 ( 0 )
 Added by Fangneng Zhan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the great success of GANs in images translation with different conditioned inputs such as semantic segmentation and edge maps, generating high-fidelity realistic images with reference styles remains a grand challenge in conditional image-to-image translation. This paper presents a general image translation framework that incorporates optimal transport for feature alignment between conditional inputs and style exemplars in image translation. The introduction of optimal transport mitigates the constraint of many-to-one feature matching significantly while building up accurate semantic correspondences between conditional inputs and exemplars. We design a novel unbalanced optimal transport to address the transport between features with deviational distributions which exists widely between conditional inputs and exemplars. In addition, we design a semantic-activation normalization scheme that injects style features of exemplars into the image translation process successfully. Extensive experiments over multiple image translation tasks show that our method achieves superior image translation qualitatively and quantitatively as compared with the state-of-the-art.



rate research

Read More

Generative adversarial networks (GANs) have achieved great success in image translation and manipulation. However, high-fidelity image generation with faithful style control remains a grand challenge in computer vision. This paper presents a versatile image translation and manipulation framework that achieves accurate semantic and style guidance in image generation by explicitly building a correspondence. To handle the quadratic complexity incurred by building the dense correspondences, we introduce a bi-level feature alignment strategy that adopts a top-$k$ operation to rank block-wise features followed by dense attention between block features which reduces memory cost substantially. As the top-$k$ operation involves index swapping which precludes the gradient propagation, we propose to approximate the non-differentiable top-$k$ operation with a regularized earth movers problem so that its gradient can be effectively back-propagated. In addition, we design a novel semantic position encoding mechanism that builds up coordinate for each individual semantic region to preserve texture structures while building correspondences. Further, we design a novel confidence feature injection module which mitigates mismatch problem by fusing features adaptively according to the reliability of built correspondences. Extensive experiments show that our method achieves superior performance qualitatively and quantitatively as compared with the state-of-the-art. The code is available at href{https://github.com/fnzhan/RABIT}{https://github.com/fnzhan/RABIT}.
In this paper, we present a fast exemplar-based image colorization approach using color embeddings named Color2Embed. Generally, due to the difficulty of obtaining input and ground truth image pairs, it is hard to train a exemplar-based colorization model with unsupervised and unpaired training manner. Current algorithms usually strive to achieve two procedures: i) retrieving a large number of reference images with high similarity for preparing training dataset, which is inevitably time-consuming and tedious; ii) designing complicated modules to transfer the colors of the reference image to the target image, by calculating and leveraging the deep semantic correspondence between them (e.g., non-local operation), which is computationally expensive during testing. Contrary to the previous methods, we adopt a self-augmented self-reference learning scheme, where the reference image is generated by graphical transformations from the original colorful one whereby the training can be formulated in a paired manner. Second, in order to reduce the process time, our method explicitly extracts the color embeddings and exploits a progressive style feature Transformation network, which injects the color embeddings into the reconstruction of the final image. Such design is much more lightweight and intelligible, achieving appealing performance with fast processing speed.
We present a novel and unified deep learning framework which is capable of learning domain-invariant representation from data across multiple domains. Realized by adversarial training with additional ability to exploit domain-specific information, the proposed network is able to perform continuous cross-domain image translation and manipulation, and produces desirable output images accordingly. In addition, the resulting feature representation exhibits superior performance of unsupervised domain adaptation, which also verifies the effectiveness of the proposed model in learning disentangled features for describing cross-domain data.
We propose the first deep learning approach for exemplar-based local colorization. Given a reference color image, our convolutional neural network directly maps a grayscale image to an output colorized image. Rather than using hand-crafted rules as in traditional exemplar-based methods, our end-to-end colorization network learns how to select, propagate, and predict colors from the large-scale data. The approach performs robustly and generalizes well even when using reference images that are unrelated to the input grayscale image. More importantly, as opposed to other learning-based colorization methods, our network allows the user to achieve customizable results by simply feeding different references. In order to further reduce manual effort in selecting the references, the system automatically recommends references with our proposed image retrieval algorithm, which considers both semantic and luminance information. The colorization can be performed fully automatically by simply picking the top reference suggestion. Our approach is validated through a user study and favorable quantitative comparisons to the-state-of-the-art methods. Furthermore, our approach can be naturally extended to video colorization. Our code and models will be freely available for public use.
We propose a general framework for unsupervised domain adaptation, which allows deep neural networks trained on a source domain to be tested on a different target domain without requiring any training annotations in the target domain. This is achieved by adding extra networks and losses that help regularize the features extracted by the backbone encoder network. To this end we propose the novel use of the recently proposed unpaired image-toimage translation framework to constrain the features extracted by the encoder network. Specifically, we require that the features extracted are able to reconstruct the images in both domains. In addition we require that the distribution of features extracted from images in the two domains are indistinguishable. Many recent works can be seen as specific cases of our general framework. We apply our method for domain adaptation between MNIST, USPS, and SVHN datasets, and Amazon, Webcam and DSLR Office datasets in classification tasks, and also between GTA5 and Cityscapes datasets for a segmentation task. We demonstrate state of the art performance on each of these datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا