Characterizing $S$-projective modules and $S$-semisimple rings by uniformity


Abstract in English

Let $R$ be a ring and $S$ a multiplicative subset of $R$. An $R$-module $P$ is called $S$-projective provided that the induced sequence $0rightarrow {rm Hom}_R(P,A)rightarrow {rm Hom}_R(P,B)rightarrow {rm Hom}_R(P,C)rightarrow 0$ is $S$-exact for any $S$-short exact sequence $0rightarrow Arightarrow Brightarrow Crightarrow 0$. Some characterizations and properties of $S$-projective modules are obtained. The notion of $S$-semisimple modules is also introduced. A ring $R$ is called an $S$-semisimple ring provided that every free $R$-module is $S$-semisimple. Several characterizations of $S$-semisimple rings are provided by using $S$-semisimple modules, $S$-projective modules, $S$-injective modules and $S$-split $S$-exact sequences.

Download