Do you want to publish a course? Click here

Zero-divisor graph of the rings $C_mathscr{P}(X)$ and $C^mathscr{P}_infty(X)$

115   0   0.0 ( 0 )
 Added by Atasi Deb Ray
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this article we introduce the zero-divisor graphs $Gamma_mathscr{P}(X)$ and $Gamma^mathscr{P}_infty(X)$ of the two rings $C_mathscr{P}(X)$ and $C^mathscr{P}_infty(X)$; here $mathscr{P}$ is an ideal of closed sets in $X$ and $C_mathscr{P}(X)$ is the aggregate of those functions in $C(X)$, whose support lie on $mathscr{P}$. $C^mathscr{P}_infty(X)$ is the $mathscr{P}$ analogue of the ring $C_infty (X)$. We find out conditions on the topology on $X$, under-which $Gamma_mathscr{P}(X)$ (respectively, $Gamma^mathscr{P}_infty(X)$) becomes triangulated/ hypertriangulated. We realize that $Gamma_mathscr{P}(X)$ (respectively, $Gamma^mathscr{P}_infty(X)$) is a complemented graph if and only if the space of minimal prime ideals in $C_mathscr{P}(X)$ (respectively $Gamma^mathscr{P}_infty(X)$) is compact. This places a special case of this result with the choice $mathscr{P}equiv$ the ideals of closed sets in $X$, obtained by Azarpanah and Motamedi in cite{Azarpanah} on a wider setting. We also give an example of a non-locally finite graph having finite chromatic number. Finally it is established with some special choices of the ideals $mathscr{P}$ and $mathscr{Q}$ on $X$ and $Y$ respectively that the rings $C_mathscr{P}(X)$ and $C_mathscr{Q}(Y)$ are isomorphic if and only if $Gamma_mathscr{P}(X)$ and $Gamma_mathscr{Q}(Y)$ are isomorphic.



rate research

Read More

In this paper, we introduce a new graph whose vertices are the nonzero zero-divisors of commutative ring $R$ and for distincts elements $x$ and $y$ in the set $Z(R)^{star}$ of the nonzero zero-divisors of $R$, $x$ and $y$ are adjacent if and only if $xy=0$ or $x+yin Z(R)$. we present some properties and examples of this graph and we study his relation with the zero-divisor graph and with a subgraph of total graph of a commutative ring.
We continue our study of the new extension of zero-divisor graph. We give a complete characterization for the possible diameters of $widetilde{Gamma}(R)$ and $widetilde{Gamma}(R[x_1,dots,x_n])$, we investigate the relation between the zero-divisor graph, the subgraph of total graph on $Z(R)^{star}$ and $widetilde{Gamma}(R)$ and we present some other properties of $widetilde{Gamma}(R)$.
The first observation of the decay $eta_{c}(2S) to p bar p$ is reported using proton-proton collision data corresponding to an integrated luminosity of $3.0rm , fb^{-1}$ recorded by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The $eta_{c}(2S)$ resonance is produced in the decay $B^{+} to [cbar c] K^{+}$. The product of branching fractions normalised to that for the $J/psi$ intermediate state, ${cal R}_{eta_{c}(2S)}$, is measured to be begin{align*} {cal R}_{eta_{c}(2S)}equivfrac{{mathcal B}(B^{+} to eta_{c}(2S) K^{+}) times {mathcal B}(eta_{c}(2S) to p bar p)}{{mathcal B}(B^{+} to J/psi K^{+}) times {mathcal B}(J/psito p bar p)} =~& (1.58 pm 0.33 pm 0.09)times 10^{-2}, end{align*} where the first uncertainty is statistical and the second systematic. No signals for the decays $B^{+} to X(3872) (to p bar p) K^{+}$ and $B^{+} to psi(3770) (to p bar p) K^{+}$ are seen, and the 95% confidence level upper limits on their relative branching ratios are % found to be ${cal R}_{X(3872)}<0.25times10^{-2}$ and ${cal R}_{psi(3770))}<0.10$. In addition, the mass differences between the $eta_{c}(1S)$ and the $J/psi$ states, between the $eta_{c}(2S)$ and the $psi(2S)$ states, and the natural width of the $eta_{c}(1S)$ are measured as begin{align*} M_{J/psi} - M_{eta_{c}(1S)} =~& 110.2 pm 0.5 pm 0.9 rm , MeV, M_{psi(2S)} -M_{eta_{c}(2S)} =~ & 52.5 pm 1.7 pm 0.6 rm , MeV, Gamma_{eta_{c}(1S)} =~& 34.0 pm 1.9 pm 1.3 rm , MeV. end{align*}
The main aim of this article is to study the relation between $F$-injective singularity and the Frobenius closure of parameter ideals in Noetherian rings of positive characteristic. The paper consists of the following themes, including many other topics. We prove that if every parameter ideal of a Noetherian local ring of prime characteristic $p>0$ is Frobenius closed, then it is $F$-injective. We prove a necessary and sufficient condition for the injectivity of the Frobenius action on $H^i_{fm}(R)$ for all $i le f_{fm}(R)$, where $f_{fm}(R)$ is the finiteness dimension of $R$. As applications, we prove the following results. (a) If the ring is $F$-injective, then every ideal generated by a filter regular sequence, whose length is equal to the finiteness dimension of the ring, is Frobenius closed. It is a generalization of a recent result of Ma and which is stated for generalized Cohen-Macaulay local rings. (b) Let $(R,fm,k)$ be a generalized Cohen-Macaulay ring of characteristic $p>0$. If the Frobenius action is injective on the local cohomology $H_{fm}^i(R)$ for all $i < dim R$, then $R$ is Buchsbaum. This gives an answer to a question of Takagi. We consider the problem when the union of two $F$-injective closed subschemes of a Noetherian $mathbb{F}_p$-scheme is $F$-injective. Using this idea, we construct an $F$-injective local ring $R$ such that $R$ has a parameter ideal that is not Frobenius closed. This result adds a new member to the family of $F$-singularities. We give the first ideal-theoretic characterization of $F$-injectivity in terms the Frobenius closure and the limit closure. We also give an answer to the question about when the Frobenius action on the top local cohomology is injective.
Let k be an arbitrary field (of arbitrary characteristic) and let X = [x_{i,j}] be a generic m x n matrix of variables. Denote by I_2(X) the ideal in k[X] = k[x_{i,j}: i = 1, ..., m; j = 1, ..., n] generated by the 2 x 2 minors of X. We give a recursive formulation for the lengths of the k[X]-module k[X]/(I_2(X) + (x_{1,1}^q,..., x_{m,n}^q)) as q varies over all positive integers using Grobner basis. This is a generalized Hilbert-Kunz function, and our formulation proves that it is a polynomial function in q. We give closed forms for the cases when m is at most 2, %as well as the closed forms for some other special length functions. We apply our method to give closed forms for these Hilbert-Kunz functions for cases $m le 2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا