No Arabic abstract
The Mott-insulating rare-earth titanates (RTiO$_3$, R being a rare-earth ion) are an important class of materials that encompasses interesting spin-orbital phases as well as ferromagnet-antiferromagnet and insulator-metal transitions. The growth of these materials has been plagued by difficulties related to overoxidation, which arises from a strong tendency of Ti$^{3+}$ to oxidize to Ti$^{4+}$. We describe our efforts to grow sizable single crystals of YTiO$_3$ and its La-substituted and Ca-doped variants with the optical travelling-solvent floating-zone technique. We present sample characterization $via$ chemical composition analysis, magnetometry, charge transport, neutron scattering, x-ray absorption spectroscopy and x-ray magnetic circular dichroism to understand macroscopic physical property variations associated with overoxidation. Furthermore, we demonstrate a good signal-to-noise ratio in inelastic magnetic neutron scattering measurements of spin-wave excitations. A superconducting impurity phase, found to appear in Ca-doped samples at high doping levels, is identified as TiO.
We have performed optical microscopy, micro-photoelectron spectroscopy, and micro-Raman scattering measurements on Y$_{0.63}$Ca$_{0.37}$TiO$_3$ single crystals in order to clarify the interplay between the microstructure and the temperature dependent electronic transport mechanisms in this material. Optical microscopy observations reveal dark and bright domain patterns on the surface with length scales of the order of several to a hundred micrometers showing a pronounced temperature dependent evolution. Spatially resolved photoelectron spectroscopy measurements show the different electronic character of these domains. Using micro-Raman spectroscopy, we observe a distinct temperature dependence of the crystal structure of these domains. On the basis of these findings the different domains are assigned to insulating and metallic volume fractions, respectively. By decreasing the temperature, the volume fraction of the conducting domains increases, hence allowing the electrons to percolate through the sample at temperatures lower than $sim$150 K.
We report on DC and pulsed electric field sensitivity of the resistance of mixed valent Mn oxide based La(5/8-y)Pr(y)Ca(3/8)MnO(3) (y = 0.4) single crystals as a function of temperature. The low temperature regime of the resistivity is highly current and voltage dependent. An irreversible transition from high (HR) to a low resistivity (LR) is obtained upon the increase of the electric field up to a temperature dependent critical value (V_c). The current-voltage characteristics in the LR regime as well as the lack of a variation in the magnetization response when V_c is reached indicate the formation of a non-single connected filamentary conducting path. The temperature dependence of V_c indicates the existence of a consolute point where the conducting and insulating phases produce a critical behavior as a consequence of their separation.
We find anomalously large diamagnetic responses in the cage compounds AV2Al20 where A = Y and La, not A = Al0.3, Sc0.4, and Lu, despite the apparent similarities in crystal and electronic structures among these compounds. The magnetic susceptibilities of the Y and La compounds become -1.94 and -7.44 x 10-4 cm3 mol-1 at 10 K, respectively, the latter of which corresponds to approximately one-quarter of that of bismuth, a well-known diamagnetic material, in terms of unit volume. The origin is not clear but may be related to a specific evolution in the band structure, as the diamagnetic response increases with increasing lattice constant.
In this paper we study LaAlO$_3$/Eu$_{1-x}$La$_x$TiO$_3$/SrTiO$_3$ structures with nominally x = 0, 0.1 and different thicknesses of the Eu$_{1-x}$La$_x$TiO$_3$ layer. We observe that both systems have many properties similar to previously studied LaAlO$_3$/EuTiO$_3$/SrTiO$_3$ and other oxide interfaces, such as the formation of a 2D electron liquid for 1 or 2 unit cells of Eu$_{1-x}$La$_x$TiO$_3$; a metal-insulator transition driven by the thickness increase of Eu$_{1-x}$La$_x$TiO$_3$ layer; the presence of an Anomalous Hall effect (AHE) when driving the systems above the Lifshitz point with a backgate voltage; and a minimum in the temperature dependence of the sheet resistance below the Lifshitz point in the one-band regime, which becomes more pronounced with increasing gate voltage. However, and notwithstanding the likely presence of magnetism in the system, we do not attribute that minimum to the Kondo effect, but rather to the properties of SrTiO$_3$ crystal and the inevitable effects of charge trapping when using back gates.
Ultrafast broadband transient reflectivity experiments are performed to study the interplay between the non-equilibrium dynamics of the pseudogap and the superconducting phases in Bi$_{2}$Sr$_{2}$Ca$_{0.92}$Y$_{0.08}$Cu$_{2}$O$_{8+delta}$. Once superconductivity is established the relaxation of the pseudogap proceeds $sim$ 2 times faster than in the normal state, and the corresponding transient reflectivity variation changes sign after $sim$ 0.5 ps. The results can be described by a set of coupled differential equations for the pseudogap and for the superconducting order parameter. The sign and strength of the coupling term suggest a remarkably weak competition between the two phases, allowing their coexistence.