Do you want to publish a course? Click here

Distributed Deep Learning in Open Collaborations

61   0   0.0 ( 0 )
 Added by Max Ryabinin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Modern deep learning applications require increasingly more compute to train state-of-the-art models. To address this demand, large corporations and institutions use dedicated High-Performance Computing clusters, whose construction and maintenance are both environmentally costly and well beyond the budget of most organizations. As a result, some research directions become the exclusive domain of a few large industrial and even fewer academic actors. To alleviate this disparity, smaller groups may pool their computational resources and run collaborative experiments that benefit all participants. This paradigm, known as grid- or volunteer computing, has seen successful applications in numerous scientific areas. However, using this approach for machine learning is difficult due to high latency, asymmetric bandwidth, and several challenges unique to volunteer computing. In this work, we carefully analyze these constraints and propose a novel algorithmic framework designed specifically for collaborative training. We demonstrate the effectiveness of our approach for SwAV and ALBERT pretraining in realistic conditions and achieve performance comparable to traditional setups at a fraction of the cost. Finally, we provide a detailed report of successful collaborative language model pretraining with 40 participants.



rate research

Read More

Distributed stochastic gradient descent (SGD) algorithms are widely deployed in training large-scale deep learning models, while the communication overhead among workers becomes the new system bottleneck. Recently proposed gradient sparsification techniques, especially Top-$k$ sparsification with error compensation (TopK-SGD), can significantly reduce the communication traffic without an obvious impact on the model accuracy. Some theoretical studies have been carried out to analyze the convergence property of TopK-SGD. However, existing studies do not dive into the details of Top-$k$ operator in gradient sparsification and use relaxed bounds (e.g., exact bound of Random-$k$) for analysis; hence the derived results cannot well describe the real convergence performance of TopK-SGD. To this end, we first study the gradient distributions of TopK-SGD during the training process through extensive experiments. We then theoretically derive a tighter bound for the Top-$k$ operator. Finally, we exploit the property of gradient distribution to propose an approximate top-$k$ selection algorithm, which is computing-efficient for GPUs, to improve the scaling efficiency of TopK-SGD by significantly reducing the computing overhead. Codes are available at: url{https://github.com/hclhkbu/GaussianK-SGD}.
For distributed machine learning with sensitive data, we demonstrate how minimizing distance correlation between raw data and intermediary representations reduces leakage of sensitive raw data patterns across client communications while maintaining model accuracy. Leakage (measured using distance correlation between input and intermediate representations) is the risk associated with the invertibility of raw data from intermediary representations. This can prevent client entities that hold sensitive data from using distributed deep learning services. We demonstrate that our method is resilient to such reconstruction attacks and is based on reduction of distance correlation between raw data and learned representations during training and inference with image datasets. We prevent such reconstruction of raw data while maintaining information required to sustain good classification accuracies.
We survey distributed deep learning models for training or inference without accessing raw data from clients. These methods aim to protect confidential patterns in data while still allowing servers to train models. The distributed deep learning methods of federated learning, split learning and large batch stochastic gradient descent are compared in addition to private and secure approaches of differential privacy, homomorphic encryption, oblivious transfer and garbled circuits in the context of neural networks. We study their benefits, limitations and trade-offs with regards to computational resources, data leakage and communication efficiency and also share our anticipated future trends.
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the currently best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways: (i) our objective formulation does not change the location of stationary points compared to the original optimization problem; (ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (i.e. to the average of their parameters); (iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and different groups correspond to different nodes. For training convolutional neural networks, we empirically demonstrate that our approach compares favorably to state-of-the-art baselines.
In the last few years, various communication compression techniques have emerged as an indispensable tool helping to alleviate the communication bottleneck in distributed learning. However, despite the fact {em biased} compressors often show superior performance in practice when compared to the much more studied and understood {em unbiased} compressors, very little is known about them. In this work we study three classes of biased compression operators, two of which are new, and their performance when applied to (stochastic) gradient descent and distributed (stochastic) gradient descent. We show for the first time that biased compressors can lead to linear convergence rates both in the single node and distributed settings. Our {em distributed} SGD method enjoys the ergodic rate $mathcal{O}left(frac{delta L exp(-K) }{mu} + frac{(C + D)}{Kmu}right)$, where $delta$ is a compression parameter which grows when more compression is applied, $L$ and $mu$ are the smoothness and strong convexity constants, $C$ captures stochastic gradient noise ($C=0$ if full gradients are computed on each node) and $D$ captures the variance of the gradients at the optimum ($D=0$ for over-parameterized models). Further, via a theoretical study of several synthetic and empirical distributions of communicated gradients, we shed light on why and by how much biased compressors outperform their unbiased variants. Finally, we propose a new highly performing biased compressor---combination of Top-$k$ and natural dithering---which in our experiments outperforms all other compression techniques.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا