Do you want to publish a course? Click here

A Note on Optimizing Distributions using Kernel Mean Embeddings

131   0   0.0 ( 0 )
 Added by Boris Muzellec
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Kernel mean embeddings are a popular tool that consists in representing probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space. When the kernel is characteristic, mean embeddings can be used to define a distance between probability measures, known as the maximum mean discrepancy (MMD). A well-known advantage of mean embeddings and MMD is their low computational cost and low sample complexity. However, kernel mean embeddings have had limited applications to problems that consist in optimizing distributions, due to the difficulty of characterizing which Hilbert space vectors correspond to a probability distribution. In this note, we propose to leverage the kernel sums-of-squares parameterization of positive functions of Marteau-Ferey et al. [2020] to fit distributions in the MMD geometry. First, we show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense. Then, we provide algorithms to optimize such distributions in the finite-sample setting, which we illustrate in a density fitting numerical experiment.



rate research

Read More

Estimating the kernel mean in a reproducing kernel Hilbert space is a critical component in many kernel learning algorithms. Given a finite sample, the standard estimate of the target kernel mean is the empirical average. Previous works have shown that better estimators can be constructed by shrinkage methods. In this work, we propose to corrupt data examples with noise from known distributions and present a new kernel mean estimator, called the marginalized kernel mean estimator, which estimates kernel mean under the corrupted distribution. Theoretically, we show that the marginalized kernel mean estimator introduces implicit regularization in kernel mean estimation. Empirically, we show on a variety of datasets that the marginalized kernel mean estimator obtains much lower estimation error than the existing estimators.
We demonstrate an equivalence between reproducing kernel Hilbert space (RKHS) embeddings of conditional distributions and vector-valued regressors. This connection introduces a natural regularized loss function which the RKHS embeddings minimise, providing an intuitive understanding of the embeddings and a justification for their use. Furthermore, the equivalence allows the application of vector-valued regression methods and results to the problem of learning conditional distributions. Using this link we derive a sparse version of the embedding by considering alternative formulations. Further, by applying convergence results for vector-valued regression to the embedding problem we derive minimax convergence rates which are O(log(n)/n) -- compared to current state of the art rates of O(n^{-1/4}) -- and are valid under milder and more intuitive assumptions. These minimax upper rates coincide with lower rates up to a logarithmic factor, showing that the embedding method achieves nearly optimal rates. We study our sparse embedding algorithm in a reinforcement learning task where the algorithm shows significant improvement in sparsity over an incomplete Cholesky decomposition.
80 - Xi-Zhu Wu , Wenkai Xu , Song Liu 2020
Given a publicly available pool of machine learning models constructed for various tasks, when a user plans to build a model for her own machine learning application, is it possible to build upon models in the pool such that the previous efforts on these existing models can be reused rather than starting from scratch? Here, a grand challenge is how to find models that are helpful for the current application, without accessing the raw training data for the models in the pool. In this paper, we present a two-phase framework. In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model. Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification. Theoretical results and extensive experiments validate the effectiveness of our approach.
Kernel PCA is a powerful feature extractor which recently has seen a reformulation in the context of Restricted Kernel Machines (RKMs). These RKMs allow for a representation of kernel PCA in terms of hidden and visible units similar to Restricted Boltzmann Machines. This connection has led to insights on how to use kernel PCA in a generative procedure, called generative kernel PCA. In this paper, the use of generative kernel PCA for exploring latent spaces of datasets is investigated. New points can be generated by gradually moving in the latent space, which allows for an interpretation of the components. Firstly, examples of this feature space exploration on three datasets are shown with one of them leading to an interpretable representation of ECG signals. Afterwards, the use of the tool in combination with novelty detection is shown, where the latent space around novel patterns in the data is explored. This helps in the interpretation of why certain points are considered as novel.
107 - Jiahao Qiu , Jianjie Zhao 2018
In this note, it is shown that several results concerning mean equicontinuity proved before for minimal systems are actually held for general topological dynamical systems. Particularly, it turns out that a dynamical system is mean equicontinuous if and only if it is equicontinuous in the mean if and only if it is Banach (or Weyl) mean equicontinuous if and only if its regionally proximal relation is equal to the Banach proximal relation. Meanwhile, a relation is introduced such that the smallest closed invariant equivalence relation containing this relation induces the maximal mean equicontinuous factor for any system.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا