We show, in this first part, that the maximal number of singular points of a quartic surface $X subset mathbb{P}^3_K$ defined over an algebraically closed field $K$ of characteristic $2$ is at most $18$. We produce examples with $14$ singular points, and show that, under several geometric assumptions ($mathfrak S_4$-symmetry, or behaviour of the Gauss map, or structure of tangent cone at one of the singular points $P$ , separability/inseparability of the projection with centre $P$), we obtain better upper bounds.