Do you want to publish a course? Click here

Weak Lensing Magnification Reconstruction with the Modified Internal Linear Combination Method

65   0   0.0 ( 0 )
 Added by Shutong Hou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measuring weak lensing cosmic magnification signal is very challenging due to the overwhelming intrinsic clustering in the observed galaxy distribution. In this paper, we modify the Internal Linear Combination (ILC) method to reconstruct the lensing signal with an extra constraint to suppress the intrinsic clustering. To quantify the performance, we construct a realistic galaxy catalogue for the LSST-like photometric survey, covering 20000 $deg^{2}$ with mean source redshift at $z_{s}sim 1$. We find that the reconstruction performance depends on the width of the photo-z bin we choose. Due to the correlation between the lensing signal and the source galaxy distribution, the derived signal has smaller systematic bias but larger statistical uncertainty for a narrower photo-z bin. We conclude that the lensing signal reconstruction with the Modified ILC method is unbiased with a statistical uncertainty $<5%$ for bin width $Delta z^{P} = 0.2$.



rate research

Read More

108 - Bryan Gillis , Andy Taylor 2015
We present a derivation of a generalized optimally-weighted estimator for the weak lensing magnification signal, including a calculation of errors. With this estimator, we present a local method for optimally estimating the local effects of magnification from weak gravitational lensing, using a comparison of number counts in an arbitrary region of space to the expected unmagnified number counts. We show that when equivalent lens and source samples are used, this estimator is simply related to the optimally-weighted correlation function estimator used in past work and vice-versa, but this method has the benefits that it can calculate errors with significantly less computational time, that it can handle overlapping lens and source samples, and that it can easily be extended to mass-mapping. We present a proof-of-principle test of this method on data from the CFHTLenS, showing that its calculated magnification signals agree with predictions from model fits to shear data. Finally, we investigate how magnification data can be used to supplement shear data in determining the best-fit model mass profiles for galaxy dark matter haloes. We find that at redshifts greater than z ~ 0.6, the inclusion of magnification can often significantly improve the constraints on the components of the mass profile which relate to galaxies local environments relative to shear alone, and in high-redshift, low- and medium-mass bins, it can have a higher signal-to-noise than the shear signal.
We test the impact of some systematic errors in weak lensing magnification measurements with the COSMOS 30-band photo-$z$ Survey flux limited to $I_{auto}<25.0$ using correlations of both source galaxy counts and magnitudes. Systematic obscuration effects are measured by comparing counts and magnification correlations. We use the ACS-HST catalogs to identify potential blending objects (close pairs) and perform the magnification analyses with and without blended objects. We find that blending effects start to be important ($sim$ 0.04~mag obscuration) at angular scales smaller than 0.1 arcmin. Extinction and other systematic obscuration effects can be as large as 0.10~mag (U-band) but are typically smaller than 0.02~mag depending on the band. After applying these corrections, we measure a $3.9sigma$ magnification signal that is consistent for both counts and magnitudes. The corresponding projected mass profiles of galaxies at redshift $z simeq 0.6$ ($M_I simeq -21$) is $Sigma= 25pm 6 M_{sun}h^3/pc^2$ at 0.1 Mpc/h, consistent with NFW type profile with $M_{200} simeq 2 times 10^{12} M_{sun} h/pc^2$. Tangential shear and flux-size magnification over the same lenses show similar mass profiles. We conclude that magnification from counts and fluxes using photometric redshifts has the potential to provide complementary weak lensing information in future wide field surveys once we carefully take into account systematic effects, such as obscuration and blending.
Internal Linear Combination (ILC) methods are some of the most widely used multi-frequency cleaning techniques employed in CMB data analysis. These methods reduce foregrounds by minimizing the total variance in the coadded map (subject to a signal-preservation constraint), although often significant foreground residuals or biases remain. A modification to the ILC method is the constrained ILC (cILC), which explicitly nulls certain foreground components; however, this foreground nulling often comes at a high price for ground-based CMB datasets, with the map noise increasing significantly on small scales. In this paper we explore a new method, the partially constrained ILC (pcILC), which allows us to optimize the tradeoff between foreground bias and variance in ILC methods. In particular, this method allows us to minimize the variance subject to an inequality constraint requiring that the constrained foregrounds are reduced by at least a fixed factor, which can be chosen based on the foreground sensitivity of the intended application. We test our method on simulated sky maps for a Simons Observatory-like experiment; we find that for cleaning thermal Sunyaev-Zeldovich (tSZ) contamination at $ell in [3000,4800]$, if a small tSZ residual of 20% of the standard ILC residual can be tolerated, the variance of the CMB temperature map is reduced by at least 50% over the cILC value. We also demonstrate an application of this method to reduce noise in CMB lensing reconstruction.
Galaxy-galaxy lensing is an essential tool for probing dark matter halos and constraining cosmological parameters. While galaxy-galaxy lensing measurements usually rely on shear, weak-lensing magnification contains additional constraining information. Using the fundamental plane (FP) of elliptical galaxies to anchor the size distribution of a background population is one method that has been proposed for performing a magnification measurement. We present a formalism for using the FP residuals of elliptical galaxies to jointly estimate the foreground mass and background redshift errors for a stacked lens scenario. The FP residuals include information about weak-lensing magnification $kappa$, and therefore foreground mass, since to first order, nonzero $kappa$ affects galaxy size but not other FP properties. We also present a modular, extensible code that implements the formalism using emulated galaxy catalogs of a photometric galaxy survey. We find that combining FP information with observed number counts of the source galaxies constrains mass and photo-z error parameters significantly better than an estimator that includes number counts only. In particular, the constraint on the mass is 17.0% if FP residuals are included, as opposed to 27.7% when only number counts are included. The effective size noise for a foreground lens of mass $M_H=10^{14}M_odot$, with a conservative selection function in size and surface brightness applied to the source population, is $sigma_{kappa,mathrm{eff}}=0.250$. We discuss the improvements to our FP model necessary to make this formalism a practical companion to shear analyses in weak lensing surveys.
In this paper the effect of weak lensing magnification on galaxy number counts is studied by cross-correlating the positions of two galaxy samples, separated by redshift, using data from the Dark Energy Survey Science Verification dataset. The analysis is carried out for two photometrically-selected galaxy samples, with mean photometric redshifts in the $0.2 < z < 0.4$ and $0.7 < z < 1.0$ ranges, in the riz bands. A signal is detected with a $3.5sigma$ significance level in each of the bands tested, and is compatible with the magnification predicted by the $Lambda$CDM model. After an extensive analysis, it cannot be attributed to any known systematic effect. The detection of the magnification signal is robust to estimated uncertainties in the outlier rate of the pho- tometric redshifts, but this will be an important issue for use of photometric redshifts in magnification mesurements from larger samples. In addition to the detection of the magnification signal, a method to select the sample with the maximum signal-to-noise is proposed and validated with data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا