Edge states of a diffusion equation in one-dimension: Rapid heat conduction to the heat bath


Abstract in English

We propose a one-dimensional (1D) diffusion equation (heat equation) for systems in which the diffusion constant (thermal diffusivity) varies alternately with a spatial period $a$. We solve the time evolution of the field (temperature) profile from a given initial distribution, by diagonalising the Hamiltonian, i.e., the Laplacian with alternating diffusion constants, and expanding the temperature profile by its eigenstates. We show that there are basically phases with or without edge states. The edge states affect the heat conduction around heat baths. In particular, rapid heat transfer to heat baths would be observed in a short time regime, which is estimated to be $t<10^{-2}$s for $asim 10^{-3}$m system and $t< 1$s for $asim 10^{-2}$m system composed of two kinds of familiar metals such as titanium, zirconium and aluminium, gold, etc. We also discuss the effective lattice model which simplifies the calculation of edge states up to high energy. It is suggested that these high energy edge states also contribute to very rapid heat conduction in a very short time regime.

Download