Do you want to publish a course? Click here

On the wave turbulence theory for stochastic and random multidimensional KdV type equations

66   0   0.0 ( 0 )
 Added by Minh-Binh Binh
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this work we consider a multidimensional KdV type equation, the Zakharov-Kuznetsov (ZK) equation. We derive the 3-wave kinetic equation from both the stochastic ZK equation and the deterministic ZK equation with random initial condition. The equation is given on a hypercubic lattice of size $L$. In the case of the stochastic ZK equation, we show that the two point correlation function can be asymptotically expressed as the solution of the 3-wave kinetic equation at the kinetic limit under very general assumptions, in which the initial condition is out of equilibrium and the size $L$ of the domain is fixed. In the case of the deterministic ZK equation with random initial condition, the kinetic equation can also be derived at the kinetic limit, but under more restrictive assumptions.

rate research

Read More

146 - Wei Wang , Yan Lv , A. J. Roberts 2011
We explore the relation between fast waves, damping and imposed noise for different scalings by considering the singularly perturbed stochastic nonlinear wave equations u u_{tt}+u_t=D u+f(u)+ u^alphadot{W} on a bounded spatial domain. An asymptotic approximation to the stochastic wave equation is constructed by a special transformation and splitting of $ u u_{t}$. This splitting gives a clear description of the structure of $u$. The approximating model, for small $ u>0$,, is a stochastic nonlinear heat equation for exponent $0leqalpha<1$,, and is a deterministic nonlinear wave equation for exponent $alpha>1$,.
332 - Bixiang Wang 2012
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by complete solutions. When deterministic forcing terms are periodic, we show that the tempered random attractors are also periodic. Since the Sobolev embeddings on unbounded domains are not compact, we establish the pullback asymptotic compactness of solutions by Balls idea of energy equations.
343 - Ruoyuan Liu , Tadahiro Oh 2021
We study the stochastic viscous nonlinear wave equations (SvNLW) on $mathbb T^2$, forced by a fractional derivative of the space-time white noise $xi$. In particular, we consider SvNLW with the singular additive forcing $D^frac{1}{2}xi$ such that solutions are expected to be merely distributions. By introducing an appropriate renormalization, we prove local well-posedness of SvNLW. By establishing an energy bound via a Yudovich-type argument, we also prove global well-posedness of the defocusing cubic SvNLW. Lastly, in the defocusing case, we prove almost sure global well-posedness of SvNLW with respect to certain Gaussian random initial data.
We study global-in-time dynamics of the stochastic nonlinear wave equations (SNLW) with an additive space-time white noise forcing, posed on the two-dimensional torus. Our goal in this paper is two-fold. (i) By introducing a hybrid argument, combining the $I$-method in the stochastic setting with a Gronwall-type argument, we first prove global well-posedness of the (renormalized) cubic SNLW in the defocusing case. Our argument yields a double exponential growth bound on the Sobolev norm of a solution. (ii) We then study the stochastic damped nonlinear wave equations (SdNLW) in the defocusing case. In particular, by applying Bourgains invariant measure argument, we prove almost sure global well-posedness of the (renormalized) defocusing SdNLW with respect to the Gibbs measure and invariance of the Gibbs measure.
86 - Thomas Giletti 2019
We devote this paper to the issue of existence of pulsating travelling front solutions for spatially periodic heterogeneous reaction-diffusion equations in arbitrary dimension, in both bistable and more general multistable frameworks. In the multistable case, the notion of a single front is not sufficient to understand the dynamics of solutions, and we instead observe the appearance of a so-called propagating terrace. This roughly refers to a finite family of stacked fronts connecting intermediate stable steady states whose speeds are ordered. Surprisingly, for a given equation, the shape of this terrace (i.e., the involved intermediate states or even the cardinality of the family of fronts) may depend on the direction of propagation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا