Do you want to publish a course? Click here

Multi-modal fusion with gating using audio, lexical and disfluency features for Alzheimers Dementia recognition from spontaneous speech

143   0   0.0 ( 0 )
 Added by Morteza Rohanian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper is a submission to the Alzheimers Dementia Recognition through Spontaneous Speech (ADReSS) challenge, which aims to develop methods that can assist in the automated prediction of severity of Alzheimers Disease from speech data. We focus on acoustic and natural language features for cognitive impairment detection in spontaneous speech in the context of Alzheimers Disease Diagnosis and the mini-mental state examination (MMSE) score prediction. We proposed a model that obtains unimodal decisions from different LSTMs, one for each modality of text and audio, and then combines them using a gating mechanism for the final prediction. We focused on sequential modelling of text and audio and investigated whether the disfluencies present in individuals speech relate to the extent of their cognitive impairment. Our results show that the proposed classification and regression schemes obtain very promising results on both development and test sets. This suggests Alzheimers Disease can be detected successfully with sequence modeling of the speech data of medical sessions.



rate research

Read More

We present two multimodal fusion-based deep learning models that consume ASR transcribed speech and acoustic data simultaneously to classify whether a speaker in a structured diagnostic task has Alzheimers Disease and to what degree, evaluating the ADReSSo challenge 2021 data. Our best model, a BiLSTM with highway layers using words, word probabilities, disfluency features, pause information, and a variety of acoustic features, achieves an accuracy of 84% and RSME error prediction of 4.26 on MMSE cognitive scores. While predicting cognitive decline is more challenging, our models show improvement using the multimodal approach and word probabilities, disfluency and pause information over word-only models. We show considerable gains for AD classification using multimodal fusion and gating, which can effectively deal with noisy inputs from acoustic features and ASR hypotheses.
Collecting and accessing a large amount of medical data is very time-consuming and laborious, not only because it is difficult to find specific patients but also because it is required to resolve the confidentiality of a patients medical records. On the other hand, there are deep learning models, trained on easily collectible, large scale datasets such as Youtube or Wikipedia, offering useful representations. It could therefore be very advantageous to utilize the features from these pre-trained networks for handling a small amount of data at hand. In this work, we exploit various multi-modal features extracted from pre-trained networks to recognize Alzheimers Dementia using a neural network, with a small dataset provided by the ADReSS Challenge at INTERSPEECH 2020. The challenge regards to discern patients suspicious of Alzheimers Dementia by providing acoustic and textual data. With the multi-modal features, we modify a Convolutional Recurrent Neural Network based structure to perform classification and regression tasks simultaneously and is capable of computing conversations with variable lengths. Our test results surpass baselines accuracy by 18.75%, and our validation result for the regression task shows the possibility of classifying 4 classes of cognitive impairment with an accuracy of 78.70%.
Emotion represents an essential aspect of human speech that is manifested in speech prosody. Speech, visual, and textual cues are complementary in human communication. In this paper, we study a hybrid fusion method, referred to as multi-modal attention network (MMAN) to make use of visual and textual cues in speech emotion recognition. We propose a novel multi-modal attention mechanism, cLSTM-MMA, which facilitates the attention across three modalities and selectively fuse the information. cLSTM-MMA is fused with other uni-modal sub-networks in the late fusion. The experiments show that speech emotion recognition benefits significantly from visual and textual cues, and the proposed cLSTM-MMA alone is as competitive as other fusion methods in terms of accuracy, but with a much more compact network structure. The proposed hybrid network MMAN achieves state-of-the-art performance on IEMOCAP database for emotion recognition.
Speech-driven facial animation involves using a speech signal to generate realistic videos of talking faces. Recent deep learning approaches to facial synthesis rely on extracting low-dimensional representations and concatenating them, followed by a decoding step of the concatenated vector. This accounts for only first-order interactions of the features and ignores higher-order interactions. In this paper we propose a polynomial fusion layer that models the joint representation of the encodings by a higher-order polynomial, with the parameters modelled by a tensor decomposition. We demonstrate the suitability of this approach through experiments on generated videos evaluated on a range of metrics on video quality, audiovisual synchronisation and generation of blinks.
In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimers disease detection of the 2021 ADReSSo (Alzheimers Dementia Recognition through Spontaneous Speech) challenge. An accuracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model. Our best-performing model that integrated component models using a stacking ensemble technique performed equally well on cross-validation and test data, indicating that it is robust against overfitting.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا