Do you want to publish a course? Click here

Optical data implies a null simultaneity test theory parameter in rotating frames

135   0   0.0 ( 0 )
 Added by Edward Kipreos
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The simultaneity framework describes the relativistic interaction of time with space. The two major proposed simultaneity frameworks are differential simultaneity, in which time is offset with distance in moving or rotating frames for each stationary observer, and absolute simultaneity, in which time is not offset with distance. We use the Mansouri and Sexl test theory to analyze the simultaneity framework in rotating frames in the absence of spacetime curvature. The Mansouri and Sexl test theory has four parameters. Three parameters describe relativistic effects. The fourth parameter, $epsilon (v)$, was described as a convention on clock synchronization. We show that $epsilon (v)$ is not a convention, but is instead a descriptor of the simultaneity framework whose value can be determined from the extent of anisotropy in the unidirectional one-way speed of light. In rotating frames, one-way light speed anisotropy is described by the Sagnac effect equation. We show that four published Sagnac equations form a relativistic series based on relativistic kinematics and simultaneity framework. Only the conventional Sagnac effect equation, and its associated isotropic two-way speed of light, is found to match high-resolution optical data. Using the conventional Sagnac effect equation, we show that $epsilon (v)$ has a null value in rotating frames, which implies absolute simultaneity. Introducing the empirical Mansouri and Sexl parameter values into the test theory equations generates the rotational form of the absolute Lorentz transformation, implying that this transformation accurately describes rotational relativistic effects.



rate research

Read More

88 - Tomi S. Koivisto 2015
The equivalence principle postulates a frame. This implies globally special and locally general relativity. It is proposed here that spacetime emerges from the gauge potential of translations, whilst the Lorenz symmetry is gauged into the interactions of the particle sector. This is, though more intuitive, the opposite to the standard formulation of gravity, and seems to lead to conceptual and technical improvements of the theory.
148 - Moses Fayngold 2016
A thought experiment is considered on observation of instantaneous collapse of an extended wave packet. According to relativity of simultaneity, such a collapse being instantaneous in some reference frame must be a lasting process in other frames. But according to quantum mechanics, collapse is instantaneous in any frame. Mathematical structure of quantum mechanics eliminates any contradictions between these two apparently conflicting statements. Here the invariance of quantum-mechanical collapse is shown to follow directly from the Born postulate, without any use of mathematical properties of quantum operators. The consistency of quantum mechanics with Relativity is also shown for instant disentanglement of a composite system.
The quantization of the electromagnetic field has successfully paved the way for the development of the Standard Model of Particle Physics and has established the basis for quantum technologies. Gravity, however, continues to hold out against physicists efforts of including it into the framework of quantum theory. Experimental techniques in quantum optics have only recently reached the precision and maturity required for the investigation of quantum systems under the influence of gravitational fields. Here, we report on experiments in which a genuine quantum state of an entangled photon pair was exposed to a series of different accelerations. We measure an entanglement witness for $g$ values ranging from 30 mg to up to 30 g - under free-fall as well on a spinning centrifuge - and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. Our work represents the first quantum optics experiment in which entanglement is systematically tested in geodesic motion as well as in accelerated reference frames with acceleration a>>g = 9.81 m/s^2.
127 - Zotin K.-H. Chu 2008
The objective of this paper is to share our enthusiasm for optical pumping experiments and to encourage their use in researches on practical physics. The experimental technique has been well developed and the apparatus sophisticated, but, by paying attention to a few details, reliable operation can be repeated. Some theoretical principles for optical pumping are also introduced and they can be demonstrated experimentally.
We study the effect of noncommutativity of space on the physics of a quantum interferometer located in a rotating disk in a gauge field background. To this end, we develop a path-integral approach which allows defining an effective action from which relevant physical quantities can be computed as in the usual commutative case. For the specific case of a constant magnetic field, we are able to compute, exactly, the noncommutative Lagrangian and the associated shift on the interference pattern for any value of $theta$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا