No Arabic abstract
Temporal correspondence - linking pixels or objects across frames - is a fundamental supervisory signal for the video models. For the panoptic understanding of dynamic scenes, we further extend this concept to every segment. Specifically, we aim to learn coarse segment-level matching and fine pixel-level matching together. We implement this idea by designing two novel learning objectives. To validate our proposals, we adopt a deep siamese model and train the model to learn the temporal correspondence on two different levels (i.e., segment and pixel) along with the target task. At inference time, the model processes each frame independently without any extra computation and post-processing. We show that our per-frame inference model can achieve new state-of-the-art results on Cityscapes-VPS and VIPER datasets. Moreover, due to its high efficiency, the model runs in a fraction of time (3x) compared to the previous state-of-the-art approach.
Panoptic segmentation has become a new standard of visual recognition task by unifying previous semantic segmentation and instance segmentation tasks in concert. In this paper, we propose and explore a new video extension of this task, called video panoptic segmentation. The task requires generating consistent panoptic segmentation as well as an association of instance ids across video frames. To invigorate research on this new task, we present two types of video panoptic datasets. The first is a re-organization of the synthetic VIPER dataset into the video panoptic format to exploit its large-scale pixel annotations. The second is a temporal extension on the Cityscapes val. set, by providing new video panoptic annotations (Cityscapes-VPS). Moreover, we propose a novel video panoptic segmentation network (VPSNet) which jointly predicts object classes, bounding boxes, masks, instance id tracking, and semantic segmentation in video frames. To provide appropriate metrics for this task, we propose a video panoptic quality (VPQ) metric and evaluate our method and several other baselines. Experimental results demonstrate the effectiveness of the presented two datasets. We achieve state-of-the-art results in image PQ on Cityscapes and also in VPQ on Cityscapes-VPS and VIPER datasets. The datasets and code are made publicly available.
Panoptic segmentation that unifies instance segmentation and semantic segmentation has recently attracted increasing attention. While most existing methods focus on designing novel architectures, we steer toward a different perspective: performing automated multi-loss adaptation (named Ada-Segment) on the fly to flexibly adjust multiple training losses over the course of training using a controller trained to capture the learning dynamics. This offers a few advantages: it bypasses manual tuning of the sensitive loss combination, a decisive factor for panoptic segmentation; it allows to explicitly model the learning dynamics, and reconcile the learning of multiple objectives (up to ten in our experiments); with an end-to-end architecture, it generalizes to different datasets without the need of re-tuning hyperparameters or re-adjusting the training process laboriously. Our Ada-Segment brings 2.7% panoptic quality (PQ) improvement on COCO val split from the vanilla baseline, achieving the state-of-the-art 48.5% PQ on COCO test-dev split and 32.9% PQ on ADE20K dataset. The extensive ablation studies reveal the ever-changing dynamics throughout the training process, necessitating the incorporation of an automated and adaptive learning strategy as presented in this paper.
Panoptic segmentation requires segments of both things (countable object instances) and stuff (uncountable and amorphous regions) within a single output. A common approach involves the fusion of instance segmentation (for things) and semantic segmentation (for stuff) into a non-overlapping placement of segments, and resolves overlaps. However, instance ordering with detection confidence do not correlate well with natural occlusion relationship. To resolve this issue, we propose a branch that is tasked with modeling how two instance masks should overlap one another as a binary relation. Our method, named OCFusion, is lightweight but particularly effective in the instance fusion process. OCFusion is trained with the ground truth relation derived automatically from the existing dataset annotations. We obtain state-of-the-art results on COCO and show competitive results on the Cityscapes panoptic segmentation benchmark.
In this paper, we present ViP-DeepLab, a unified model attempting to tackle the long-standing and challenging inverse projection problem in vision, which we model as restoring the point clouds from perspective image sequences while providing each point with instance-level semantic interpretations. Solving this problem requires the vision models to predict the spatial location, semantic class, and temporally consistent instance label for each 3D point. ViP-DeepLab approaches it by jointly performing monocular depth estimation and video panoptic segmentation. We name this joint task as Depth-aware Video Panoptic Segmentation, and propose a new evaluation metric along with two derived datasets for it, which will be made available to the public. On the individual sub-tasks, ViP-DeepLab also achieves state-of-the-art results, outperforming previous methods by 5.1% VPQ on Cityscapes-VPS, ranking 1st on the KITTI monocular depth estimation benchmark, and 1st on KITTI MOTS pedestrian. The datasets and the evaluation codes are made publicly available.
Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which makes the pipeline inefficient to implement. In addition, a heuristic method is usually employed to merge the results. However, the overlapping relationship between object instances is difficult to determine without sufficient context information during the merging process. To address the problems, we propose a novel end-to-end network for panoptic segmentation, which can efficiently and effectively predict both the instance and stuff segmentation in a single network. Moreover, we introduce a novel spatial ranking module to deal with the occlusion problem between the predicted instances. Extensive experiments have been done to validate the performance of our proposed method and promising results have been achieved on the COCO Panoptic benchmark.