There is a need for remote learning and virtual learning applications such as virtual reality (VR) and tablet-based solutions which the current pandemic has demonstrated. Creating complex learning scenarios by developers is highly time-consuming and can take over a year. There is a need to provide a simple method to enable lecturers to create their own content for their laboratory tutorials. Research is currently being undertaken into developing generic models to enable the semi-automatic creation of a virtual learning application. A case study describing the creation of a virtual learning application for an electrical laboratory tutorial is presented.
The Nearly Autonomous Management and Control System (NAMAC) is a comprehensive control system that assists plant operations by furnishing control recommendations to operators in a broad class of situations. This study refines a NAMAC system for making reasonable recommendations during complex loss-of-flow scenarios with a validated Experimental Breeder Reactor II simulator, digital twins improved by machine-learning algorithms, a multi-attribute decision-making scheme, and a discrepancy checker for identifying unexpected recommendation effects. We assessed the performance of each NAMAC component, while we demonstrated and evaluated the capability of NAMAC in a class of loss-of-flow scenarios.
The potential of digital twin technology is immense, specifically in the infrastructure, aerospace, and automotive sector. However, practical implementation of this technology is not at an expected speed, specifically because of lack of application-specific details. In this paper, we propose a novel digital twin framework for stochastic nonlinear multi-degree of freedom (MDOF) dynamical systems. The approach proposed in this paper strategically decouples the problem into two time-scales -- (a) a fast time-scale governing the system dynamics and (b) a slow time-scale governing the degradation in the system. The proposed digital twin has four components - (a) a physics-based nominal model (low-fidelity), (b) a Bayesian filtering algorithm a (c) a supervised machine learning algorithm and (d) a high-fidelity model for predicting future responses. The physics-based nominal model combined with Bayesian filtering is used combined parameter state estimation and the supervised machine learning algorithm is used for learning the temporal evolution of the parameters. While the proposed framework can be used with any choice of Bayesian filtering and machine learning algorithm, we propose to use unscented Kalman filter and Gaussian process. Performance of the proposed approach is illustrated using two examples. Results obtained indicate the applicability and excellent performance of the proposed digital twin framework.
Wireless Virtual Reality (VR) users are able to enjoy immersive experience from anywhere at anytime. However, providing full spherical VR video with high quality under limited VR interaction latency is challenging. If the viewpoint of the VR user can be predicted in advance, only the required viewpoint is needed to be rendered and delivered, which can reduce the VR interaction latency. Therefore, in this paper, we use offline and online learning algorithms to predict viewpoint of the VR user using real VR dataset. For the offline learning algorithm, the trained learning model is directly used to predict the viewpoint of VR users in continuous time slots. While for the online learning algorithm, based on the VR users actual viewpoint delivered through uplink transmission, we compare it with the predicted viewpoint and update the parameters of the online learning algorithm to further improve the prediction accuracy. To guarantee the reliability of the uplink transmission, we integrate the Proactive retransmission scheme into our proposed online learning algorithm. Simulation results show that our proposed online learning algorithm for uplink wireless VR network with the proactive retransmission scheme only exhibits about 5% prediction error.
Reconstructing 3D models from large, dense point clouds is critical to enable Virtual Reality (VR) as a platform for entertainment, education, and heritage preservation. Existing 3D reconstruction systems inevitably make trade-offs between three conflicting goals: the efficiency of reconstruction (e.g., time and memory requirements), the visual quality of the constructed scene, and the rendering speed on the VR device. This paper proposes a reconstruction system that simultaneously meets all three goals. The key idea is to avoid the resource-demanding process of reconstructing a high-polygon mesh altogether. Instead, we propose to directly transfer details from the original point cloud to a low polygon mesh, which significantly reduces the reconstruction time and cost, preserves the scene details, and enables real-time rendering on mobile VR devices. While our technique is general, we demonstrate it in reconstructing cultural heritage sites. We for the first time digitally reconstruct the Elmina Castle, a UNESCO world heritage site at Ghana, from billions of laser-scanned points. The reconstruction process executes on low-end desktop systems without requiring high processing power, making it accessible to the broad community. The reconstructed scenes render on Oculus Go in 60 FPS, providing a real-time VR experience with high visual quality. Our project is part of the Digital Elmina effort (http://digitalelmina.org/) between University of Rochester and University of Ghana.
In online advertising, recommender systems try to propose items from a list of products to potential customers according to their interests. Such systems have been increasingly deployed in E-commerce due to the rapid growth of information technology and availability of large datasets. The ever-increasing progress in the field of artificial intelligence has provided powerful tools for dealing with such real-life problems. Deep reinforcement learning (RL) that deploys deep neural networks as universal function approximators can be viewed as a valid approach for design and implementation of recommender systems. This paper provides a comparative study between value-based and policy-based deep RL algorithms for designing recommender systems for online advertising. The RecoGym environment is adopted for training these RL-based recommender systems, where the long short term memory (LSTM) is deployed to build value and policy networks in these two approaches, respectively. LSTM is used to take account of the key role that order plays in the sequence of item observations by users. The designed recommender systems aim at maximising the click-through rate (CTR) for the recommended items. Finally, guidelines are provided for choosing proper RL algorithms for different scenarios that the recommender system is expected to handle.
Claire Palmer
,Ben Roullier
,Muhammad Aamir
.
(2021)
.
"Virtual Reality based Digital Twin System for remote laboratories and online practical learning"
.
Claire Palmer Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا