By combining the density matrix renormalization group (DMRG) method with Gutzwiller projected wave functions, we provide clear evidence that the ground state of the SU(4) Kugel-Khomskii spin-orbital model on the triangular lattice can be well described by a ``single Gutzwiller projected wave function with an emergent parton Fermi surface, despite it exhibits strong finite size effect and even-odd discrepancy in quasi-one-dimensional cylinders. This ground state preserves SU(4) symmetry, but spontaneously breaks translational symmetry by doubling the unit cell along one of the lattice vector directions. The finite size effect and even-odd discrepancy can be resolved by the fact that the parton Fermi surface consists of open orbits in the reciprocal space. Thereby, a nematic spin-orbital liquid state is expected in the two-dimensional limit. Furthermore, our DMRG results indicate that the fluctuating stripes are critical and the central charge of each stripe is $c=3$, in agreement with the SU(4)$_1$ Wess-Zumino-Witten conformal field theory. All these results are consistent with the Lieb-Schultz-Mattis-Oshikawa-Hastings theorem.