No Arabic abstract
The large amount of audiovisual content being shared online today has drawn substantial attention to the prospect of audiovisual self-supervised learning. Recent works have focused on each of these modalities separately, while others have attempted to model both simultaneously in a cross-modal fashion. However, comparatively little attention has been given to leveraging one modality as a training objective to learn from the other. In this work, we propose Learning visual speech Representations from Audio via self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech. We find that this pre-trained model can be leveraged towards word-level and sentence-level lip-reading through feature extraction and fine-tuning experiments. We show that our approach significantly outperforms other self-supervised methods on the Lip Reading in the Wild (LRW) dataset and achieves state-of-the-art performance on Lip Reading Sentences 2 (LRS2) using only a fraction of the total labelled data.
Contrastive learning has delivered impressive results in many audio-visual representation learning scenarios. However, existing approaches optimize for learning either textit{global} representations useful for tasks such as classification, or textit{local} representations useful for tasks such as audio-visual source localization and separation. While they produce satisfactory results in their intended downstream scenarios, they often fail to generalize to tasks that they were not originally designed for. In this work, we propose a versatile self-supervised approach to learn audio-visual representations that generalize to both the tasks which require global semantic information (e.g., classification) and the tasks that require fine-grained spatio-temporal information (e.g. localization). We achieve this by optimizing two cross-modal contrastive objectives that together encourage our model to learn discriminative global-local visual information given audio signals. To show that our approach learns generalizable video representations, we evaluate it on various downstream scenarios including action/sound classification, lip reading, deepfake detection, and sound source localization.
The intuitive interaction between the audio and visual modalities is valuable for cross-modal self-supervised learning. This concept has been demonstrated for generic audiovisual tasks like video action recognition and acoustic scene classification. However, self-supervision remains under-explored for audiovisual speech. We propose a method to learn self-supervised speech representations from the raw audio waveform. We train a raw audio encoder by combining audio-only self-supervision (by predicting informative audio attributes) with visual self-supervision (by generating talking faces from audio). The visual pretext task drives the audio representations to capture information related to lip movements. This enriches the audio encoder with visual information and the encoder can be used for evaluation without the visual modality. Our method attains competitive performance with respect to existing self-supervised audio features on established isolated word classification benchmarks, and significantly outperforms other methods at learning from fewer labels. Notably, our method also outperforms fully supervised training, thus providing a strong initialization for speech related tasks. Our results demonstrate the potential of multimodal self-supervision in audiovisual speech for learning good audio representations.
Self-supervised learning has attracted plenty of recent research interest. However, most works for self-supervision in speech are typically unimodal and there has been limited work that studies the interaction between audio and visual modalities for cross-modal self-supervision. This work (1) investigates visual self-supervision via face reconstruction to guide the learning of audio representations; (2) proposes an audio-only self-supervision approach for speech representation learning; (3) shows that a multi-task combination of the proposed visual and audio self-supervision is beneficial for learning richer features that are more robust in noisy conditions; (4) shows that self-supervised pretraining can outperform fully supervised training and is especially useful to prevent overfitting on smaller sized datasets. We evaluate our learned audio representations for discrete emotion recognition, continuous affect recognition and automatic speech recognition. We outperform existing self-supervised methods for all tested downstream tasks. Our results demonstrate the potential of visual self-supervision for audio feature learning and suggest that joint visual and audio self-supervision leads to more informative audio representations for speech and emotion recognition.
We investigate a strategy for improving the efficiency of contrastive learning of visual representations by leveraging a small amount of supervised information during pre-training. We propose a semi-supervised loss, SuNCEt, based on noise-contrastive estimation and neighbourhood component analysis, that aims to distinguish examples of different classes in addition to the self-supervised instance-wise pretext tasks. On ImageNet, we find that SuNCEt can be used to match the semi-supervised learning accuracy of previous contrastive approaches while using less than half the amount of pre-training and compute. Our main insight is that leveraging even a small amount of labeled data during pre-training, and not only during fine-tuning, provides an important signal that can significantly accelerate contrastive learning of visual representations. Our code is available online at github.com/facebookresearch/suncet.
Multimodal VAEs seek to model the joint distribution over heterogeneous data (e.g. vision, language), whilst also capturing a shared representation across such modalities. Prior work has typically combined information from the modalities by reconciling idiosyncratic representations directly in the recognition model through explicit products, mixtures, or other such factorisations. Here we introduce a novel alternative, the MEME, that avoids such explicit combinations by repurposing semi-supervised VAEs to combine information between modalities implicitly through mutual supervision. This formulation naturally allows learning from partially-observed data where some modalities can be entirely missing -- something that most existing approaches either cannot handle, or do so to a limited extent. We demonstrate that MEME outperforms baselines on standard metrics across both partial and complete observation schemes on the MNIST-SVHN (image-image) and CUB (image-text) datasets. We also contrast the quality of the representations learnt by mutual supervision against standard approaches and observe interesting trends in its ability to capture relatedness between data.