Do you want to publish a course? Click here

Intra- and Inter-Fraction Relative Range Verification in Heavy-Ion Therapy Using Filtered Interaction Vertex Imaging

75   0   0.0 ( 0 )
 Added by Devin Hymers
 Publication date 2021
  fields Physics
and research's language is English
 Authors Devin Hymers




Ask ChatGPT about the research

Heavy-ion therapy, particularly using scanned (active) beam delivery, provides a precise and highly conformal dose distribution, with maximum dose deposition for each pencil beam at its endpoint (Bragg peak), and low entrance and exit dose. To take full advantage of this precision, robust range verification methods are required; these methods ensure that the Bragg peak is positioned correctly in the patient and the dose is delivered as prescribed. Relative range verification allows intra-fraction monitoring of Bragg peak spacing to ensure full coverage with each fraction, as well as inter-fraction monitoring to ensure all fractions are delivered consistently. To validate the proposed filtered Interaction Vertex Imaging method for relative range verification, a ${}^{16}$O beam was used to deliver 12 Bragg peak positions in a 40 mm poly-(methyl methacrylate) phantom. Secondary particles produced in the phantom were monitored using position-sensitive silicon detectors. Events recorded on these detectors, along with a measurement of the treatment beam axis, were used to reconstruct the sites of origin of these secondary particles in the phantom. The distal edge of the depth distribution of these reconstructed points was determined with logistic fits, and the translation in depth required to minimize the $chi^2$ statistic between these fits was used to compute the range shift between any two Bragg peak positions. In all cases, the range shift was determined with sub-millimeter precision, to a standard deviation of 200 $mu$m. This result validates filtered Interaction Vertex Imaging as a reliable relative range verification method, which should be capable of monitoring each energy step in each fraction of a scanned heavy-ion treatment plan.



rate research

Read More

We study the propagation of nucleons and nuclei in tissue-like media within a Monte Carlo Model for Heavy-ion Therapy (MCHIT) based on the GEANT4 toolkit (version 8.2). The model takes into account fragmentation of projectile nuclei and secondary interactions of produced nuclear fragments. Model predictions are validated with available experimental data obtained for water and PMMA phantoms irradiated by monoenergetic carbon-ion beams. The MCHIT model describes well (1) the depth-dose distributions in water and PMMA, (2) the doses measured for fragments of certain charge, (3) the distributions of positron emitting nuclear fragments produced by carbon-ion beams, and (4) the energy spectra of secondary neutrons measured at different angles to the beam direction. Radial dose profiles for primary nuclei and for different projectile fragments are calculated and discussed as possible input for evaluation of biological dose distributions. It is shown that at the periphery of the transverse dose profile close to the Bragg peak the dose from secondary nuclear fragments is comparable to the dose from primary nuclei.
Purpose: To verify dose delivery and quality assurance of volumetric modulated arc therapy (VMAT) for head and neck cancer. Method: The Imaging and Radiation Oncology Core Houston (IROC-H) head and neck phantom with thermo- luminescent dosimeters (TLDs) and films, were imaged with computed tomography scan and the reconstructed image was transferred to pinnacle treatment planning system (TPS). On TPS the planning target volume (PTV), secondary target volume (STV) and organ at risk (OAR) were delineated manually and a treatment plan was made. The dose constraints were determined for the concerned organs according to IROC-H prescription. The treatment plan was optimized using adoptive convolution algorithm to improve dose homogeneity and conformity. The dose calculation was performed using C.C Convolution algorithm and a Varian True Beam linear accelerator was used to deliver the treatment plan to the head and neck phantom. The delivered radiation dose to the phantom was measured through TLDs and GafChromic EBT2 films. The dosimetric performance of the VMAT delivery was studied by analysing percent dose difference, iso-dose line profile and gamma analysis of the TPS computed dose and linac delivered doses. Result: the percent dose difference of 3.8% was observed between the planned and measured doses of TLDs and a 1.5mm distance to agreement (DTA) was observed by comparing iso-dose line profiles. Passed the gamma criteria of 3%/3 mm was with good percentages. Conclusion: The dosimetric performance of VMAT delivery for a challenging head and neck radiotherapy can be verified using TLDs and films imbedded in an anthropomorphic H&N phantom.
Proton beam therapy can potentially offer improved treatment for cancers of the head and neck and in paediatric patients. There has been a sharp uptake of proton beam therapy in recent years as improved delivery techniques and patient benefits are observed. However, treatments are currently planned using conventional x-ray CT images due to the absence of devices able to perform high quality proton computed tomography (pCT) under realistic clinical conditions. A new plastic-scintillator-based range telescope concept, named ASTRA, is proposed here as the energy tagging detector of a pCT system. Simulations conducted using Geant4 yield an expected energy resolution of 0.7% and have demonstrated the ability of ASTRA to track multiple protons simultaneously. If calorimetric information is used the energy resolution could be further improved to about 0.5%. Assuming clinical beam parameters the system is expected to be able to efficiently reconstruct at least, 10$^8$ protons/s. The performance of ASTRA has been tested by imaging phantoms to evaluate the image contrast and relative stopping power reconstruction.
Depth distributions of positron-emitting nuclei in PMMA phantoms are calculated within a Monte Carlo model for Heavy-Ion Therapy (MCHIT) based on the GEANT4 toolkit (version 8.0). The calculated total production rates of $^{11}$C, $^{10}$C and $^{15}$O nuclei are compared with experimental data and with corresponding results of the FLUKA and POSGEN codes. The distributions of e$^+$ annihilation points are obtained by simulating radioactive decay of unstable nuclei and transporting positrons in surrounding medium. A finite spatial resolution of the Positron Emission Tomography (PET) is taken into account in a simplified way. Depth distributions of $beta^+$-activity as seen by a PET scanner are calculated and compared to available data for PMMA phantoms. The calculated $beta^+$-activity profiles are in good agreement with PET data for proton and $^{12}$C beams at energies suitable for particle therapy. The MCHIT capability to predict the $beta^+$-activity and dose distributions in tissue-like materials of different chemical composition is demonstrated.
Charged Particle Therapy is a technique for cancer treatment that exploits hadron beams, mostly protons and carbons. A critical issue is the monitoring of the dose released by the beam to the tumor and to the surrounding tissues. We present the design of a new tracking device for monitoring on-line the dose in ion therapy through the detection of secondary charged particles produced by the beam interactions in the patient tissues. In fact, the charged particle emission shape can be correlated with the spatial dose release and the Bragg peak position. The detector uses the information provided by 12 layers of scintillating fibers followed by a plastic scintillator and a small calorimeter made of a pixelated Lutetium Fine Silicate crystal. Simulations have been performed to evaluate the achievable spatial resolution and a possible application of the device for the monitoring of the dose profile in a real treatment is presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا