Do you want to publish a course? Click here

An Intelligent Question Answering System based on Power Knowledge Graph

113   0   0.0 ( 0 )
 Added by Yachen Tang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The intelligent question answering (IQA) system can accurately capture users search intention by understanding the natural language questions, searching relevant content efficiently from a massive knowledge-base, and returning the answer directly to the user. Since the IQA system can save inestimable time and workforce in data search and reasoning, it has received more and more attention in data science and artificial intelligence. This article introduced a domain knowledge graph using the graph database and graph computing technologies from massive heterogeneous data in electric power. It then proposed an IQA system based on the electrical power knowledge graph to extract the intent and constraints of natural interrogation based on the natural language processing (NLP) method, to construct graph data query statements via knowledge reasoning, and to complete the accurate knowledge search and analysis to provide users with an intuitive visualization. This method thoroughly combined knowledge graph and graph computing characteristics, realized high-speed multi-hop knowledge correlation reasoning analysis in tremendous knowledge. The proposed work can also provide a basis for the context-aware intelligent question and answer.



rate research

Read More

89 - Daniel Vollmers 2021
Knowledge Graph Question Answering (KGQA) systems are based on machine learning algorithms, requiring thousands of question-answer pairs as training examples or natural language processing pipelines that need module fine-tuning. In this paper, we present a novel QA approach, dubbed TeBaQA. Our approach learns to answer questions based on graph isomorphisms from basic graph patterns of SPARQL queries. Learning basic graph patterns is efficient due to the small number of possible patterns. This novel paradigm reduces the amount of training data necessary to achieve state-of-the-art performance. TeBaQA also speeds up the domain adaption process by transforming the QA system development task into a much smaller and easier data compilation task. In our evaluation, TeBaQA achieves state-of-the-art performance on QALD-8 and delivers comparable results on QALD-9 and LC-QuAD v1. Additionally, we performed a fine-grained evaluation on complex queries that deal with aggregation and superlative questions as well as an ablation study, highlighting future research challenges.
Incorporating external knowledge to Visual Question Answering (VQA) has become a vital practical need. Existing methods mostly adopt pipeline approaches with different components for knowledge matching and extraction, feature learning, etc.However, such pipeline approaches suffer when some component does not perform well, which leads to error propagation and poor overall performance. Furthermore, the majority of existing approaches ignore the answer bias issue -- many answers may have never appeared during training (i.e., unseen answers) in real-word application. To bridge these gaps, in this paper, we propose a Zero-shot VQA algorithm using knowledge graphs and a mask-based learning mechanism for better incorporating external knowledge, and present new answer-based Zero-shot VQA splits for the F-VQA dataset. Experiments show that our method can achieve state-of-the-art performance in Zero-shot VQA with unseen answers, meanwhile dramatically augment existing end-to-end models on the normal F-VQA task.
226 - Sinan Tan , Mengmeng Ge , Di Guo 2021
In this paper, we propose a novel Knowledge-based Embodied Question Answering (K-EQA) task, in which the agent intelligently explores the environment to answer various questions with the knowledge. Different from explicitly specifying the target object in the question as existing EQA work, the agent can resort to external knowledge to understand more complicated question such as Please tell me what are objects used to cut food in the room?, in which the agent must know the knowledge such as knife is used for cutting food. To address this K-EQA problem, a novel framework based on neural program synthesis reasoning is proposed, where the joint reasoning of the external knowledge and 3D scene graph is performed to realize navigation and question answering. Especially, the 3D scene graph can provide the memory to store the visual information of visited scenes, which significantly improves the efficiency for the multi-turn question answering. Experimental results have demonstrated that the proposed framework is capable of answering more complicated and realistic questions in the embodied environment. The proposed method is also applicable to multi-agent scenarios.
177 - Peiyun Wu , Yunjie Wu , Linjuan Wu 2021
Semantic parsing, as an important approach to question answering over knowledge bases (KBQA), transforms a question into the complete query graph for further generating the correct logical query. Existing semantic parsing approaches mainly focus on relations matching with paying less attention to the underlying internal structure of questions (e.g., the dependencies and relations between all entities in a question) to select the query graph. In this paper, we present a relational graph convolutional network (RGCN)-based model gRGCN for semantic parsing in KBQA. gRGCN extracts the global semantics of questions and their corresponding query graphs, including structure semantics via RGCN and relational semantics (label representation of relations between entities) via a hierarchical relation attention mechanism. Experiments evaluated on benchmarks show that our model outperforms off-the-shelf models.
Healthcare question answering assistance aims to provide customer healthcare information, which widely appears in both Web and mobile Internet. The questions usually require the assistance to have proficient healthcare background knowledge as well as the reasoning ability on the knowledge. Recently a challenge involving complex healthcare reasoning, HeadQA dataset, has been proposed, which contains multiple-choice questions authorized for the public healthcare specialization exam. Unlike most other QA tasks that focus on linguistic understanding, HeadQA requires deeper reasoning involving not only knowledge extraction, but also complex reasoning with healthcare knowledge. These questions are the most challenging for current QA systems, and the current performance of the state-of-the-art method is slightly better than a random guess. In order to solve this challenging task, we present a Multi-step reasoning with Knowledge extraction framework (MurKe). The proposed framework first extracts the healthcare knowledge as supporting documents from the large corpus. In order to find the reasoning chain and choose the correct answer, MurKe iterates between selecting the supporting documents, reformulating the query representation using the supporting documents and getting entailment score for each choice using the entailment model. The reformulation module leverages selected documents for missing evidence, which maintains interpretability. Moreover, we are striving to make full use of off-the-shelf pre-trained models. With less trainable weight, the pre-trained model can easily adapt to healthcare tasks with limited training samples. From the experimental results and ablation study, our system is able to outperform several strong baselines on the HeadQA dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا