No Arabic abstract
We propose Banker-OMD, a novel framework generalizing the classical Online Mirror Descent (OMD) technique in online learning algorithm design. Banker-OMD allows algorithms to robustly handle delayed feedback, and offers a general methodology for achieving $tilde{O}(sqrt{T} + sqrt{D})$-style regret bounds in various delayed-feedback online learning tasks, where $T$ is the time horizon length and $D$ is the total feedback delay. We demonstrate the power of Banker-OMD with applications to three important bandit scenarios with delayed feedback, including delayed adversarial Multi-armed bandits (MAB), delayed adversarial linear bandits, and a novel delayed best-of-both-worlds MAB setting. Banker-OMD achieves nearly-optimal performance in all the three settings. In particular, it leads to the first delayed adversarial linear bandit algorithm achieving $tilde{O}(text{poly}(n)(sqrt{T} + sqrt{D}))$ regret.
In this paper we consider online mirror descent (OMD) algorithms, a class of scalable online learning algorithms exploiting data geometric structures through mirror maps. Necessary and sufficient conditions are presented in terms of the step size sequence ${eta_t}_{t}$ for the convergence of an OMD algorithm with respect to the expected Bregman distance induced by the mirror map. The condition is $lim_{ttoinfty}eta_t=0, sum_{t=1}^{infty}eta_t=infty$ in the case of positive variances. It is reduced to $sum_{t=1}^{infty}eta_t=infty$ in the case of zero variances for which the linear convergence may be achieved by taking a constant step size sequence. A sufficient condition on the almost sure convergence is also given. We establish tight error bounds under mild conditions on the mirror map, the loss function, and the regularizer. Our results are achieved by some novel analysis on the one-step progress of the OMD algorithm using smoothness and strong convexity of the mirror map and the loss function.
We consider an online revenue maximization problem over a finite time horizon subject to lower and upper bounds on cost. At each period, an agent receives a context vector sampled i.i.d. from an unknown distribution and needs to make a decision adaptively. The revenue and cost functions depend on the context vector as well as some fixed but possibly unknown parameter vector to be learned. We propose a novel offline benchmark and a new algorithm that mixes an online dual mirror descent scheme with a generic parameter learning process. When the parameter vector is known, we demonstrate an $O(sqrt{T})$ regret result as well an $O(sqrt{T})$ bound on the possible constraint violations. When the parameter is not known and must be learned, we demonstrate that the regret and constraint violations are the sums of the previous $O(sqrt{T})$ terms plus terms that directly depend on the convergence of the learning process.
We introduce a general method for improving the convergence rate of gradient-based optimizers that is easy to implement and works well in practice. We demonstrate the effectiveness of the method in a range of optimization problems by applying it to stochastic gradient descent, stochastic gradient descent with Nesterov momentum, and Adam, showing that it significantly reduces the need for the manual tuning of the initial learning rate for these commonly used algorithms. Our method works by dynamically updating the learning rate during optimization using the gradient with respect to the learning rate of the update rule itself. Computing this hypergradient needs little additional computation, requires only one extra copy of the original gradient to be stored in memory, and relies upon nothing more than what is provided by reverse-mode automatic differentiation.
This work addresses decentralized online optimization in non-stationary environments. A network of agents aim to track the minimizer of a global time-varying convex function. The minimizer evolves according to a known dynamics corrupted by an unknown, unstructured noise. At each time, the global function can be cast as a sum of a finite number of local functions, each of which is assigned to one agent in the network. Moreover, the local functions become available to agents sequentially, and agents do not have a prior knowledge of the future cost functions. Therefore, agents must communicate with each other to build an online approximation of the global function. We propose a decentralized variation of the celebrated Mirror Descent, developed by Nemirovksi and Yudin. Using the notion of Bregman divergence in lieu of Euclidean distance for projection, Mirror Descent has been shown to be a powerful tool in large-scale optimization. Our algorithm builds on Mirror Descent, while ensuring that agents perform a consensus step to follow the global function and take into account the dynamics of the global minimizer. To measure the performance of the proposed online algorithm, we compare it to its offline counterpart, where the global functions are available a priori. The gap between the two is called dynamic regret. We establish a regret bound that scales inversely in the spectral gap of the network, and more notably it represents the deviation of minimizer sequence with respect to the given dynamics. We then show that our results subsume a number of results in distributed optimization. We demonstrate the application of our method to decentralized tracking of dynamic parameters and verify the results via numerical experiments.
We address scaling up equilibrium computation in Mean Field Games (MFGs) using Online Mirror Descent (OMD). We show that continuous-time OMD provably converges to a Nash equilibrium under a natural and well-motivated set of monotonicity assumptions. This theoretical result nicely extends to multi-population games and to settings involving common noise. A thorough experimental investigation on various single and multi-population MFGs shows that OMD outperforms traditional algorithms such as Fictitious Play (FP). We empirically show that OMD scales up and converges significantly faster than FP by solving, for the first time to our knowledge, examples of MFGs with hundreds of billions states. This study establishes the state-of-the-art for learning in large-scale multi-agent and multi-population games.