Do you want to publish a course? Click here

Fractional Brownian motion in superharmonic potentials and non-Boltzmann stationary distributions

72   0   0.0 ( 0 )
 Added by Ralf Metzler
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the stochastic motion of particles driven by long-range correlated fractional Gaussian noise in a superharmonic external potential of the form $U(x)propto x^{2n}$ ($ninmathbb{N}$). When the noise is considered to be external, the resulting overdamped motion is described by the non-Markovian Langevin equation for fractional Brownian motion. For this case we show the existence of long time, stationary probability density functions (PDFs) the shape of which strongly deviates from the naively expected Boltzmann PDF in the confining potential $U(x)$. We analyse in detail the temporal approach to stationarity as well as the shape of the non-Boltzmann stationary PDF. A typical characteristic is that subdiffusive, antipersistent (with negative autocorrelation) motion tends to effect an accumulation of probability close to the origin as compared to the corresponding Boltzmann distribution while the opposite trend occurs for superdiffusive (persistent) motion. For this latter case this leads to distinct bimodal shapes of the PDF. This property is compared to a similar phenomenon observed for Markovian L{e}vy flights in superharmonic potentials. We also demonstrate that the motion encoded in the fractional Langevin equation driven by fractional Gaussian noise always relaxes to the Boltzmann distribution, as in this case the fluctuation-dissipation theorem is fulfilled.



rate research

Read More

We investigate the dynamics of quantum particles in a ratchet potential subject to an ac force field. We develop a perturbative approach for weak ratchet potentials and force fields. Within this approach, we obtain an analytic description of dc current rectification and current reversals. Transport characteristics for various limiting cases -- such as the classical limit, limit of high or low frequencies, and/or high temperatures -- are derived explicitly. To gain insight into the intricate dependence of the rectified current on the relevant parameters, we identify characteristic scales and obtain the response of the ratchet system in terms of scaling functions. We pay a special attention to inertial effects and show that they are often relevant, for example, at high temperatures. We find that the high temperature decay of the rectified current follows an algebraic law with a non-trivial exponent, $jpropto T^{-17/6}$.
We study the effects of an intermittent harmonic potential of strength $mu = mu_0 u$ -- that switches on and off stochastically at a constant rate $gamma$, on an overdamped Brownian particle with damping coefficient $ u$. This can be thought of as a realistic model for realisation of stochastic resetting. We show that this dynamics admits a stationary solution in all parameter regimes and compute the full time dependent variance for the position distribution and find the characteristic relaxation time. We find the exact non-equilibrium stationary state distributions in the limits -- (i) $gammallmu_0 $ which shows a non-trivial distribution, in addition as $mu_0toinfty$, we get back the result for resetting with refractory period; (ii) $gammaggmu_0$ where the particle relaxes to a Boltzmann distribution of an Ornstein-Uhlenbeck process with half the strength of the original potential and (iii) intermediate $gamma=2nmu_0$ for $n=1, 2$. The mean first passage time (MFPT) to find a target exhibits an optimisation with the switching rate, however unlike instantaneous resetting the MFPT does not diverge but reaches a stationary value at large rates. MFPT also shows similar behavior with respect to the potential strength. Our results can be verified in experiments on colloids using optical tweezers.
139 - M. A. Rajabpour 2009
We find the exact winding number distribution of Riemann-Liouville fractional Brownian motion for large times in two dimensions using the propagator of a free particle. The distribution is similar to the Brownian motion case and it is of Cauchy type. In addition we find the winding number distribution of fractal time process, i.e., time fractional Fokker-Planck equation, in the presence of finite size winding center.
244 - Thomas Vojta , Zachary Miller , 2021
Diffusive transport in many complex systems features a crossover between anomalous diffusion at short times and normal diffusion at long times. This behavior can be mathematically modeled by cutting off (tempering) beyond a mesoscopic correlation time the power-law correlations between the increments of fractional Brownian motion. Here, we investigate such tempered fractional Brownian motion confined to a finite interval by reflecting walls. Specifically, we explore how the tempering of the long-time correlations affects the strong accumulation and depletion of particles near reflecting boundaries recently discovered for untempered fractional Brownian motion. We find that exponential tempering introduces a characteristic size for the accumulation and depletion zones but does not affect the functional form of the probability density close to the wall. In contrast, power-law tempering leads to more complex behavior that differs between the superdiffusive and subdiffusive cases.
269 - J. Peguiron , M. Grifoni 2005
Quantum Brownian motion in ratchet potentials is investigated by means of an approach based on a duality relation. This relation links the long-time dynamics in a tilted ratchet potential in the presence of dissipation with the one in a driven dissipative tight-binding model. The application to quantum ratchet yields a simple expression for the ratchet current in terms of the transition rates in the tight-binding system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا