Do you want to publish a course? Click here

RefBERT: Compressing BERT by Referencing to Pre-computed Representations

131   0   0.0 ( 0 )
 Added by Haiqin Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently developed large pre-trained language models, e.g., BERT, have achieved remarkable performance in many downstream natural language processing applications. These pre-trained language models often contain hundreds of millions of parameters and suffer from high computation and latency in real-world applications. It is desirable to reduce the computation overhead of the models for fast training and inference while keeping the model performance in downstream applications. Several lines of work utilize knowledge distillation to compress the teacher model to a smaller student model. However, they usually discard the teachers knowledge when in inference. Differently, in this paper, we propose RefBERT to leverage the knowledge learned from the teacher, i.e., facilitating the pre-computed BERT representation on the reference sample and compressing BERT into a smaller student model. To guarantee our proposal, we provide theoretical justification on the loss function and the usage of reference samples. Significantly, the theoretical result shows that including the pre-computed teachers representations on the reference samples indeed increases the mutual information in learning the student model. Finally, we conduct the empirical evaluation and show that our RefBERT can beat the vanilla TinyBERT over 8.1% and achieves more than 94% of the performance of $BERTBASE$ on the GLUE benchmark. Meanwhile, RefBERT is 7.4x smaller and 9.5x faster on inference than BERT$_{rm BASE}$.



rate research

Read More

In this paper, we propose a novel model compression approach to effectively compress BERT by progressive module replacing. Our approach first divides the original BERT into several modules and builds their compact substitutes. Then, we randomly replace the original modules with their substitutes to train the compact modules to mimic the behavior of the original modules. We progressively increase the probability of replacement through the training. In this way, our approach brings a deeper level of interaction between the original and compact models. Compared to the previous knowledge distillation approaches for BERT compression, our approach does not introduce any additional loss function. Our approach outperforms existing knowledge distillation approaches on GLUE benchmark, showing a new perspective of model compression.
106 - Yunchuan Chen , Lili Mou , Yan Xu 2016
Neural networks are among the state-of-the-art techniques for language modeling. Existing neural language models typically map discrete words to distributed, dense vector representations. After information processing of the preceding context words by hidden layers, an output layer estimates the probability of the next word. Such approaches are time- and memory-intensive because of the large numbers of parameters for word embeddings and the output layer. In this paper, we propose to compress neural language models by sparse word representations. In the experiments, the number of parameters in our model increases very slowly with the growth of the vocabulary size, which is almost imperceptible. Moreover, our approach not only reduces the parameter space to a large extent, but also improves the performance in terms of the perplexity measure.
Self-supervised learning aims to learn good representations with unlabeled data. Recent works have shown that larger models benefit more from self-supervised learning than smaller models. As a result, the gap between supervised and self-supervised learning has been greatly reduced for larger models. In this work, instead of designing a new pseudo task for self-supervised learning, we develop a model compression method to compress an already learned, deep self-supervised model (teacher) to a smaller one (student). We train the student model so that it mimics the relative similarity between the data points in the teachers embedding space. For AlexNet, our method outperforms all previous methods including the fully supervised model on ImageNet linear evaluation (59.0% compared to 56.5%) and on nearest neighbor evaluation (50.7% compared to 41.4%). To the best of our knowledge, this is the first time a self-supervised AlexNet has outperformed supervised one on ImageNet classification. Our code is available here: https://github.com/UMBCvision/CompRess
Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese -- Lattice-BERT, which explicitly incorporates word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.
Language model pre-training has shown promising results in various downstream tasks. In this context, we introduce a cross-modal pre-trained language model, called Speech-Text BERT (ST-BERT), to tackle end-to-end spoken language understanding (E2E SLU) tasks. Taking phoneme posterior and subword-level text as an input, ST-BERT learns a contextualized cross-modal alignment via our two proposed pre-training tasks: Cross-modal Masked Language Modeling (CM-MLM) and Cross-modal Conditioned Language Modeling (CM-CLM). Experimental results on three benchmarks present that our approach is effective for various SLU datasets and shows a surprisingly marginal performance degradation even when 1% of the training data are available. Also, our method shows further SLU performance gain via domain-adaptive pre-training with domain-specific speech-text pair data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا