No Arabic abstract
A critical task in 5G networks with heterogeneous services is spectrum slicing of the shared radio resources, through which each service gets performance guarantees. In this paper, we consider a setup in which a Base Station (BS) should serve two types of traffic in the downlink, enhanced mobile broadband (eMBB) and ultra-reliable low-latency communication (URLLC), respectively. Two resource allocation strategies are considered, non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA). A framework for power minimization is presented, in which the BS knows the channel state information (CSI) of the eMBB users only. Nevertheless, due to the resource sharing, it is shown that this knowledge can be used also to the benefit of the URLLC users. The numerical results show that NOMA leads to a lower power consumption compared to OMA for every simulation parameter under test.
Enhanced mobile broadband (eMBB) and ultrareliable and low-latency communications (URLLC) are two major expected services in the fifth-generation mobile communication systems (5G). Specifically, eMBB applications support extremely high data rate communications, while URLLC services aim to provide stringent latency with high reliability communications. Due to their differentiated quality-of-service (QoS) requirements, the spectrum sharing between URLLC and eMBB services becomes a challenging scheduling issue. In this paper, we aim to investigate the URLLC and eMBB coscheduling/coexistence problem under a puncturing technique in multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) systems. The objective function is formulated to maximize the data rate of eMBB users while satisfying the latency requirements of URLLC users through joint user selection and power allocation scheduling. To solve this problem, we first introduce an eMBB user clustering mechanism to balance the system performance and computational complexity. Thereafter, we decompose the original problem into two subproblems, namely the scheduling problem of user selection and power allocation. We introduce a Gale-Shapley (GS) theory to solve with the user selection problem, and a successive convex approximation (SCA) and a difference of convex (D.C.) programming to deal with the power allocation problem. Finally, an iterative algorithm is utilized to find the global solution with low computational complexity. Numerical results show the effectiveness of the proposed algorithms, and also verify the proposed approach outperforms other baseline methods.
This paper considers the coexistence of Ultra Reliable Low Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB) services in the uplink of Cloud Radio Access Network (C-RAN) architecture based on the relaying of radio signals over analog fronthaul links. While Orthogonal Multiple Access (OMA) to the radio resources enables the isolation and the separate design of different 5G services, Non-Orthogonal Multiple Access (NOMA) can enhance the system performance by sharing wireless and fronthaul resources. This paper provides an information-theoretic perspective in the performance of URLLC and eMBB traffic under both OMA and NOMA. The analysis focuses on standard cellular models with additive Gaussian noise links and a finite inter-cell interference span, and it accounts for different decoding strategies such as puncturing, Treating Interference as Noise (TIN) and Successive Interference Cancellation (SIC). Numerical results demonstrate that, for the considered analog fronthauling C-RAN architecture, NOMA achieves higher eMBB rates with respect to OMA, while guaranteeing reliable low-rate URLLC communication with minimal access latency. Moreover, NOMA under SIC is seen to achieve the best performance, while, unlike the case with digital capacity-constrained fronthaul links, TIN always outperforms puncturing.
Ultra-reliability and low latency communication has long been an important but challenging task in the fifth and sixth generation wireless communication systems. Scheduling as many users as possible to serve on the limited time-frequency resource is one of a crucial topic, subjecting to the maximum allowable transmission power and the minimum rate requirement of each user. We address it by proposing a mixed integer programming model, with the goal of maximizing the set cardinality of users instead of maximizing the system sum rate or energy efficiency. Mathematical transformations and successive convex approximation are combined to solve the complex optimization problem. Numerical results show that the proposed method achieves a considerable performance compared with exhaustive search method, but with lower computational complexity.
We introduce a framework for linear precoder design over a massive multiple-input multiple-output downlink system and in presence of nonlinear power amplifiers (PAs). By studying the spatial characteristics of the distortion, we demonstrate that conventional linear precoding techniques steer nonlinear distortions in the direction of the users. We show that, by taking into account PA nonlinearity characteristics, one can design linear precoders that reduce, and in single-user scenarios, even remove completely the distortion transmitted in the direction of the users. This, however, is achieved at the price of a considerably reduced array gain. To address this issue, we present precoder optimization algorithms which simultaneously take into account the effects of array gain, distortion, multiuser interference, and receiver noise. Specifically, we derive an expression for the achievable sum rate and propose an iterative algorithm that attempts to find the precoding matrix maximizing this expression. Moreover, using a model for PA power consumption, we propose an algorithm that attempts to find the precoding matrix minimizing the consumed power for a given minimum achievable sum rate. Our numerical results demonstrate that the proposed distortion-aware precoding techniques yield considerable improvements in terms of spectral and energy efficiency compared to conventional linear precoding techniques.
The 5G systems will feature three generic services: enhanced Mobile BroadBand (eMBB), massive Machine-Type Communications (mMTC) and Ultra-Reliable and Low-Latency Communications (URLLC). The diverse requirements of these services in terms of data-rates, number of connected devices, latency and reliability can lead to a sub-optimal use of the 5G network, thus network slicing is proposed as a solution that creates customized slices of the network specifically designed to meet the requirements of each service. Under the network slicing, the radio resources can be shared in orthogonal and non-orthogonal schemes. Motivated by Industrial Internet of Things (IIoT) scenarios where a large number of sensors may require connectivity with stringent requirements of latency and reliability, we propose the use of Non-Orthogonal Multiple Access (NOMA) to improve the number of URLLC users that are connected in the uplink to the same base station (BS), for both orthogonal and non-orthogonal network slicing with eMBB users. The multiple URLLC users transmit simultaneously and across multiple frequency channels. We set the reliability requirements for the two services and analyze their pair of sum rates. We show that, even with overlapping transmissions from multiple eMBB and URLLC users, the use of NOMA techniques allows us to guarantee the reliability requirements for both services.