Do you want to publish a course? Click here

Neutron Spin Structure from e-3He Scattering with Double Spectator Tagging at the Electron-Ion Collider

152   0   0.0 ( 0 )
 Added by Douglas Higinbotham
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The spin structure function of the neutron is traditionally determined by measuring the spin asymmetry of inclusive electron deep inelastic scattering (DIS) off polarized3He nuclei. In such experiments, nuclear effects can lead to large model dependencies in the interpretation of experimental data. Here we study the feasibility of suppressing such model dependencies by tagging both spectator protons in the process of DIS off neutrons in3He at the forthcoming Electron-Ion Collider (EIC). This allows reconstructing the momentum of the struck neutron to ensure it was nearly at rest in the initial state, thereby reducing sensitivity to nuclear corrections, and suppress contributions from electron DIS off protonsin3He. Using realistic accelerator and detector configurations, we find that the EIC can probe the neutron spin structure from xB of 0.003 to 0.651. We further find that the double spectator tagging method results in reduced uncertainties bya factor of 4 on the extracted neutron spin asymmetries over all kinematics, and by a factor of 10 in the low-xB region,thereby providing valuable insight to the spin and flavor structure of nucleons



rate research

Read More

Background: Deep-inelastic scattering (DIS) on the deuteron with spectator nucleon tagging represents a unique method for extracting the free neutron structure functions and exploring the nuclear modifications of bound protons and neutrons. The detection of the spectator (with typical momenta $lesssim$ 100 MeV/c in the deuteron rest frame) controls the nuclear configuration during the DIS process and enables a differential analysis of nuclear effects. At the future electron-ion collider (EIC) such measurements will be performed using far-forward detectors. Purpose: Simulate deuteron DIS with proton or neutron tagging with the baseline EIC far-forward detector design. Quantify detector acceptance and resolution effects. Study feasibility of free nucleon structure extraction using pole extrapolation in the spectator momentum. Methods: DIS events with proton and neutron spectators are generated using the BeAGLE Monte Carlo generator. The spectator nucleon momentum is reconstructed including effects of detector acceptance and resolution. Pole extrapolation is performed under realistic conditions. The free nucleon structure extraction is validated by comparing with the input model. Results: Proton and neutron spectator detection is possible over the full transverse momentum range $0 < p_T < 100$ MeV/c needed for pole extrapolation. Resolution effects on the distributions before corrections are ~10% for proton and ~30 for neutron spectators. The overall accuracy of nucleon structure extraction is expected to be at the few-percent level. Conclusions: Free neutron structure extraction through proton tagging and pole extrapolation is feasible with the baseline EIC far-forward detector design. The corresponding extraction of free proton structure through neutron tagging provides a reference point for future studies of nuclear modifications.
We report on the first measurement of the F2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to < 100 MeV and their angles to < 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear corrections estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.
Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. We compare the unique capabilities foreseen at the electron-ion collider (EIC) with those at the hadron-electron ring accelerator (HERA), the only previous electron-proton collider; and describe five key experimental measurements, enabled by the EIC and aimed at delivering fundamental insights that will generate concrete answers to the questions of how mass and structure arise in the pion and kaon, the Standard Models NG modes, whose surprisingly low mass is critical to the evolution of our Universe.
How the bulk of the Universes visible mass emerges and how it is manifest in the existence and properties of hadrons are profound questions that probe into the heart of strongly interacting matter. Paradoxically, the lightest pseudoscalar mesons appear to be the key to the further understanding of the emergent mass and structure mechanisms. These mesons, namely the pion and kaon, are the Nambu-Goldstone boson modes of QCD. Unravelling their partonic structure and the interplay between emergent and Higgs-boson mass mechanisms is a common goal of three interdependent approaches -- continuum QCD phenomenology, lattice-regularised QCD, and the global analysis of parton distributions -- linked to experimental measurements of hadron structure. Experimentally, the foreseen electron-ion collider will enable a revolution in our ability to study pion and kaon structure, accessed by scattering from the meson cloud of the proton through the Sullivan process. With the goal of enabling a suite of measurements that can address these questions, we examine key reactions to identify the critical detector system requirements needed to map tagged pion and kaon cross sections over a wide range of kinematics. The excellent prospects for extracting pion structure function and form factor data are shown, and similar prospects for kaon structure are discussed in the context of a worldwide programme. Successful completion of the programme outlined herein will deliver deep, far-reaching insights into the emergence of pions and kaons, their properties, and their role as QCDs Goldstone boson modes.
Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. The Barely Off-shell Nucleon Structure (BONuS) experiment at Jefferson Lab measured the inelastic electron deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model independent extraction of the neutron structure function. A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c. For the extraction of the free neutron structure function $F_{2n}$, spectator protons at backward angle and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Labs CLAS spectrometer. The extracted neutron structure function $F_{2n}$ and its ratio to the deuteron structure function $F_{2d}$ are presented in both the resonance and deep inelastic regions. The dependence of the cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Our data set can be used to study neutron resonance excitations, test quark hadron duality in the neutron, develop more precise parametrizations of structure functions, as well as investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d/u as x goes to 1.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا