Do you want to publish a course? Click here

Topological charge and spin pumping in a semiconductor nanowire

85   0   0.0 ( 0 )
 Added by Zhi-Hai Liu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The adiabatic topological pumping is proposed by periodically modulating a semiconductor nanowire double-quantum-dot chain. We demonstrate that the quantized charge transport can be achieved by a nontrivial modulation of the quantum-dot well and barrier potentials. When the quantum-dot well potential is replaced by a time-dependent staggered magnetic field, the topological spin pumping can be realized by periodically modulating the barrier potentials and magnetic field. We also demonstrate that in the presence of Rashba spin-orbit interaction, the double-quantum-dot chain can be used to implement the topological spin pumping. However, the pumped spin in this case can have a quantization axis other than the applied magnetic field direction. Moreover, we show that all the adiabatic topological pumping are manifested by the presence of gapless edge states traversing the band gap as a function of time.



rate research

Read More

Motion of electrons can influence their spins through a fundamental effect called spin-orbit interaction. This interaction provides a way to electrically control spins and as such lies at the foundation of spintronics. Even at the level of single electrons, spin-orbit interaction has proven promising for coherent spin rotations. Here we report a spin-orbit quantum bit implemented in an InAs nanowire, where spin-orbit interaction is so strong that spin and motion can no longer be separated. In this regime we realize fast qubit rotations and universal single qubit control using only electric fields. We enhance coherence by dynamically decoupling the qubit from the environment. Our qubits are individually addressable: they are hosted in single-electron quantum dots, each of which has a different Lande g-factor. The demonstration of a nanowire qubit opens ways to harness the advantages of nanowires for use in quantum computing. Nanowires can serve as one-dimensional templates for scalable qubit registers. Unique to nanowires is the possibility to easily vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and push semiconductor qubit fidelities towards error-correction levels. Furthermore, electrical dots can be integrated with optical dots in p-n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, the flying qubit, for long-distance quantum communication.
Solids with topologically robust electronic states exhibit unusual electronic and optical transport properties that do not exist in other materials. A particularly interesting example is chiral charge pumping, the so-called chiral anomaly, in recently discovered topological Weyl semimetals, where simultaneous application of parallel DC electric and magnetic fields creates an imbalance in the number of carriers of opposite topological charge (chirality). Here, using time-resolved terahertz measurements on the Weyl semimetal TaAs in a magnetic field, we optically interrogate the chiral anomaly by dynamically pumping the chiral charges and monitoring their subsequent relaxation. Theory based on Boltzmann transport shows that the observed effects originate from an optical nonlinearity in the chiral charge pumping process. Our measurements reveal that the chiral population relaxation time is much greater than 1 ns. The observation of terahertz-controlled chiral carriers with long coherence times and topological protection suggests the application of Weyl semimetals for quantum optoelectronic technology.
Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to $1.3,$GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.
The interplay between spin, charge, and orbital degrees of freedom has led to the development of spintronic devices like spin-torque oscillators, spin-logic devices, and spin-transfer torque magnetic random-access memories. In this development spin pumping, the process where pure spin-currents are generated from magnetisation precession, has proved to be a powerful method for probing spin physics and magnetisation dynamics. The effect originates from direct conversion of low energy quantised spin-waves in the magnet, known as magnons, into a flow of spins from the precessing magnet to adjacent normal metal leads. The spin-pumping phenomenon represents a convenient way to electrically detect magnetisation dynamics, however, precessing magnets have been limited so far to pump pure spin currents, which require a secondary spin-charge conversion element such as heavy metals with large spin Hall angle or multi-layer layouts to be detectable. Here, we report the experimental observation of charge pumping in which a precessing ferromagnet pumps a charge current, demonstrating direct conversion of magnons into high-frequency currents via the relativistic spin-orbit interaction. The generated electric current, differently from spin currents generated by spin-pumping, can be directly detected without the need of any additional spin to charge conversion mechanism and amplitude and phase information about the relativistic current-driven magnetisation dynamics. The charge-pumping phenomenon is generic and gives a deeper understanding of the recently observed spin-orbit torques, of which it is the reciprocal effect and which currently attract interest for their potential in manipulating magnetic information. Furthermore, charge pumping provides a novel link between magnetism and electricity and may find application in sourcing alternating electric currents.
Layered transition-metal dichalcogenides (TMDs) family are gaining increasing importance due to their unique electronic band structures, promising interplay among light, valley (pseudospin), charge and spin degrees of freedom. They possess large intrinsic spin-orbit interaction which make them most relevant for the emerging field of spin-orbitronics. Here we report on the conversion of spin current to charge current in MoS2 monolayer. Using spin pumping from a ferromagnetic layer (10 nm of cobalt) we find that the spin to charge conversion is highly efficient. Analysis in the frame of the inverse Rashba-Edelstein (RE) effect yields a RE length in excess of 4 nm at room temperature. Furthermore, owing to the semiconducting nature of MoS$_{2}$, it is found that back-gating allows electrical field control of the spin-relaxation rate of the MoS$_{2}$-metallic stack.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا