Do you want to publish a course? Click here

Sonic and Alfvenic Critical Point and the Solar Probe Mission: presentation to the Solar Probe Science and Technology Definition Team

56   0   0.0 ( 0 )
 Added by William Matthaeus
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Are critical points important in the Solar Probe Mission? This is a brief discussion of the nature of critical points in solar wind models, what this means physically in the real solar wind, and what can be expected along a nominal Solar Probe Orbit. The conclusion is that the regions where the wind becomes transonic and trans-Alfvenic, which may be irregular and varying, may reveal interesting physics, but the mathematically defined critical points themselves are of less importance.



rate research

Read More

We make use of the Parker Solar Probe (PSP) data to explore the nature of solar wind turbulence focusing on the Alfvenic character and power spectra of the fluctuations and their dependence on distance and context (i.e. large scale solar wind properties), aiming to understand the role that different effects such as source properties, solar wind expansion, stream interaction might play in determining the turbulent state. We carry out a statistical survey of the data from the first five orbits of PSP with a focus on how the fluctuation properties at the large, MHD scales, vary with different solar wind streams and distance from the Sun. A more in-depth analysis from several selected periods is also presented. Our results show that as fluctuations are transported outward by the solar wind, the magnetic field spectrum steepens while the shape of the velocity spectrum remains unchanged. The steepening process is controlled by the age of the turbulence, determined by the wind speed together with the radial distance. Statistically, faster solar wind has higher Alfvenicity, with more dominant outward propagating wave component and more balanced magnetic/kinetic energies. The outward wave dominance gradually weakens with radial distance, while the excess of magnetic energy is found to be stronger as we move closer toward the Sun. We show that the turbulence properties can vary significantly stream to stream even if these streams are of similar speed, indicating very different origins of these streams. Especially, the slow wind that originates near the polar coronal holes has much lower Alfvenicity compared with the slow wind that originates from the active regions/pseudostreamers. We show that structures such as heliospheric current sheets and velocity shears can play an important role in modifying the properties of the turbulence.
Electrostatic analyzers of different designs have been used since the earliest days of the space age, beginning with the very earliest solar wind measurements made by Mariner 2 en route to Venus in 1962. The Parker Solar Probe (PSP) mission, NASAs first dedicated mission to study the innermost reaches of the heliosphere, makes its thermal plasma measurements using a suite of instruments called the Solar Wind Electrons, Alphas, and Protons (SWEAP) investigation. SWEAPs electron Parker Solar Probe Analyzer (SPAN-E) instruments are a pair of top-hat electrostatic analyzers on PSP that are capable of measuring the electron distribution function in the solar wind from 2 eV to 30 keV. For the first time, in-situ measurements of thermal electrons provided by SPAN-E will help reveal the heating and acceleration mechanisms driving the evolution of the solar wind at the points of acceleration and heating, closer than ever before to the Sun. This paper details the design of the SPAN-E sensors and their operation, data formats, and measurement caveats from Parker Solar Probes first two close encounters with the Sun.
Solar Orbiter, the first mission of ESAs Cosmic Vision 2015-2025 programme and a mission of international collaboration between ESA and NASA, will explore the Sun and heliosphere from close up and out of the ecliptic plane. It was launched on 10 February 2020 04:03 UTC from Cape Canaveral and aims to address key questions of solar and heliospheric physics pertaining to how the Sun creates and controls the Heliosphere, and why solar activity changes with time. To answer these, the mission carries six remote-sensing instruments to observe the Sun and the solar corona, and four in-situ instruments to measure the solar wind, energetic particles, and electromagnetic fields. In this paper, we describe the science objectives of the mission, and how these will be addressed by the joint observations of the instruments onboard. The paper first summarises the mission-level science objectives, followed by an overview of the spacecraft and payload. We report the observables and performance figures of each instrument, as well as the trajectory design. This is followed by a summary of the science operations concept. The paper concludes with a more detailed description of the science objectives. Solar Orbiter will combine in-situ measurements in the heliosphere with high-resolution remote-sensing observations of the Sun to address fundamental questions of solar and heliospheric physics. The performance of the Solar Orbiter payload meets the requirements derived from the missions science objectives. Its science return will be augmented further by coordinated observations with other space missions and ground-based observatories.
The slow solar wind is typically characterized as having low Alfvenicity. However, Parker Solar Probe (PSP) observed predominately Alfvenic slow solar wind during several of its initial encounters. From its first encounter observations, about 55.3% of the slow solar wind inside 0.25 au is highly Alfvenic ($|sigma_C| > 0.7$) at current solar minimum, which is much higher than the fraction of quiet-Sun-associated highly Alfvenic slow wind observed at solar maximum at 1 au. Intervals of slow solar wind with different Alfvenicities seem to show similar plasma characteristics and temperature anisotropy distributions. Some low Alfvenicity slow wind intervals even show high temperature anisotropies, because the slow wind may experience perpendicular heating as fast wind does when close to the Sun. This signature is confirmed by Wind spacecraft measurements as we track PSP observations to 1 au. Further, with nearly 15 years of Wind measurements, we find that the distributions of plasma characteristics, temperature anisotropy and helium abundance ratio ($N_alpha/N_p$) are similar in slow winds with different Alfvenicities, but the distributions are different from those in the fast solar wind. Highly Alfvenic slow solar wind contains both helium-rich ($N_alpha/N_psim0.045$) and helium-poor ($N_alpha/N_psim0.015$) populations, implying it may originate from multiple source regions. These results suggest that highly Alfvenic slow solar wind shares similar temperature anisotropy and helium abundance properties with regular slow solar winds, and they thus should have multiple origins.
The physical mechanisms that produce the slow solar wind are still highly debated. Parker Solar Probes (PSPs) second solar encounter provided a new opportunity to relate in situ measurements of the nascent slow solar wind with white-light images of streamer flows. We exploit data taken by the Solar and Heliospheric Observatory (SOHO), the Solar TErrestrial RElations Observatory (STEREO) and the Wide Imager on Solar Probe to reveal for the first time a close link between imaged streamer flows and the high-density plasma measured by the Solar Wind Electrons Alphas and Protons (SWEAP) experiment. We identify different types of slow winds measured by PSP that we relate to the spacecrafts magnetic connectivity (or not) to streamer flows. SWEAP measured high-density and highly variable plasma when PSP was well connected to streamers but more tenuous wind with much weaker density variations when it exited streamer flows. STEREO imaging of the release and propagation of small transients from the Sun to PSP reveals that the spacecraft was continually impacted by the southern edge of streamer transients. The impact of specific density structures is marked by a higher occurrence of magnetic field reversals measured by the FIELDS magnetometers. Magnetic reversals originating from the streamers are associated with larger density variations compared with reversals originating outside streamers. We tentatively interpret these findings in terms of magnetic reconnection between open magnetic fields and coronal loops with different properties, providing support for the formation of a subset of the slow wind by magnetic reconnection.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا