Do you want to publish a course? Click here

Dark Energy Survey Year 3 results: Galaxy-halo connection from galaxy-galaxy lensing

120   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxy-galaxy lensing is a powerful probe of the connection between galaxies and their host dark matter halos, which is important both for galaxy evolution and cosmology. We extend the measurement and modeling of the galaxy-galaxy lensing signal in the recent Dark Energy Survey Year 3 cosmology analysis to the highly nonlinear scales ($sim 100$ kpc). This extension enables us to study the galaxy-halo connection via a Halo Occupation Distribution (HOD) framework for the two lens samples used in the cosmology analysis: a luminous red galaxy sample (redMaGiC) and a magnitude-limited galaxy sample (MagLim). We find that redMaGiC (MagLim) galaxies typically live in dark matter halos of mass $log_{10}(M_{h}/M_{odot}) approx 13.7$ which is roughly constant over redshift ($13.3-13.5$ depending on redshift). We constrain these masses to $sim 15%$, approximately $1.5$ times improvement over previous work. We also constrain the linear galaxy bias more than 5 times better than what is inferred by the cosmological scales only. We find the satellite fraction for redMaGiC (MagLim) to be $sim 0.1-0.2$ ($0.1-0.3$) with no clear trend in redshift. Our constraints on these halo properties are broadly consistent with other available estimates from previous work, large-scale constraints and simulations. The framework built in this paper will be used for future HOD studies with other galaxy samples and extensions for cosmological analyses.



rate research

Read More

123 - J. Prat , C. Sanchez , Y. Fang 2017
We present galaxy-galaxy lensing measurements from 1321 sq. deg. of the Dark Energy Survey (DES) Year 1 (Y1) data. The lens sample consists of a selection of 660,000 red galaxies with high-precision photometric redshifts, known as redMaGiC, split into five tomographic bins in the redshift range $0.15 < z < 0.9$. We use two different source samples, obtained from the Metacalibration (26 million galaxies) and Im3shape (18 million galaxies) shear estimation codes, which are split into four photometric redshift bins in the range $0.2 < z < 1.3$. We perform extensive testing of potential systematic effects that can bias the galaxy-galaxy lensing signal, including those from shear estimation, photometric redshifts, and observational properties. Covariances are obtained from jackknife subsamples of the data and validated with a suite of log-normal simulations. We use the shear-ratio geometric test to obtain independent constraints on the mean of the source redshift distributions, providing validation of those obtained from other photo-$z$ studies with the same data. We find consistency between the galaxy bias estimates obtained from our galaxy-galaxy lensing measurements and from galaxy clustering, therefore showing the galaxy-matter cross-correlation coefficient $r$ to be consistent with one, measured over the scales used for the cosmological analysis. The results in this work present one of the three two-point correlation functions, along with galaxy clustering and cosmic shear, used in the DES cosmological analysis of Y1 data, and hence the methodology and the systematics tests presented here provide a critical input for that study as well as for future cosmological analyses in DES and other photometric galaxy surveys.
110 - S. Pandey , E. Krause , J. DeRose 2021
We constrain cosmological parameters and galaxy-bias parameters using the combination of galaxy clustering and galaxy-galaxy lensing measurements from the Dark Energy Survey Year-3 data. We describe our modeling framework and choice of scales analyzed, validating their robustness to theoretical uncertainties in small-scale clustering by analyzing simulated data. Using a linear galaxy bias model and redMaGiC galaxy sample, we obtain constraints on the matter content of the universe to be $Omega_{rm m} = 0.325^{+0.033}_{-0.034}$. We also implement a non-linear galaxy bias model to probe smaller scales that includes parameterizations based on hybrid perturbation theory, and find that it leads to a 17% gain in cosmological constraining power. Using the redMaGiC galaxy sample as foreground lens galaxies, we find the galaxy clustering and galaxy-galaxy lensing measurements to exhibit significant signals akin to decorrelation between galaxies and mass on large scales, which is not expected in any current models. This likely systematic measurement error biases our constraints on galaxy bias and the $S_8$ parameter. We find that a scale-, redshift- and sky-area-independent phenomenological decorrelation parameter can effectively capture this inconsistency between the galaxy clustering and galaxy-galaxy lensing. We perform robustness tests of our methodology pipeline and demonstrate stability of the constraints to changes in the theory model. After accounting for this decorrelation, we infer the constraints on the mean host halo mass of the redMaGiC galaxies from the large-scale bias constraints, finding the galaxies occupy halos of mass approximately $1.5 times 10^{13} M_{odot}/h$.
96 - J. Prat , J. Blazek , C. Sanchez 2021
We present and characterize the galaxy-galaxy lensing signal measured using the first three years of data from the Dark Energy Survey (DES Y3) covering 4132 deg$^2$. These galaxy-galaxy measurements are used in the DES Y3 3$times$2pt cosmological analysis, which combines weak lensing and galaxy clustering information. We use two lens samples: a magnitude-limited sample and the redMaGic sample, which span the redshift range $sim 0.2-1$ with 10.7 M and 2.6 M galaxies respectively. For the source catalog, we use the Metacalibration shape sample, consisting of $simeq$100 M galaxies separated into 4 tomographic bins. Our galaxy-galaxy lensing estimator is the mean tangential shear, for which we obtain a total S/N of $sim$148 for MagLim ($sim$120 for redMaGic), and $sim$67 ($sim$55) after applying the scale cuts of 6 Mpc/$h$. Thus we reach percent-level statistical precision, which requires that our modeling and systematic-error control be of comparable accuracy. The tangential shear model used in the 3$times$2pt cosmological analysis includes lens magnification, a five-parameter intrinsic alignment model (TATT), marginalization over a point-mass to remove information from small scales and a linear galaxy bias model validated with higher-order terms. We explore the impact of these choices on the tangential shear observable and study the significance of effects not included in our model, such as reduced shear, source magnification and source clustering. We also test the robustness of our measurements to various observational and systematics effects, such as the impact of observing conditions, lens-source clustering, random-point subtraction, scale-dependent Metacalibration responses, PSF residuals, and B-modes.
We present the first cosmology results from large-scale structure in the Dark Energy Survey (DES) spanning 5000 deg$^2$. We perform an analysis combining three two-point correlation functions (3$times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions. The analysis was designed to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results. We model the data within the flat $Lambda$CDM and $w$CDM cosmological models. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude $S_8=0.776^{+0.017}_{-0.017}$ and matter density $Omega_{mathrm{m}} = 0.339^{+0.032}_{-0.031}$ in $Lambda$CDM, mean with 68% confidence limits; $S_8=0.775^{+0.026}_{-0.024}$, $Omega_{mathrm{m}} = 0.352^{+0.035}_{-0.041}$, and dark energy equation-of-state parameter $w=-0.98^{+0.32}_{-0.20}$ in $w$CDM. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed $p=0.13$ to $0.48$. When combining DES 3$times$2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find $p=0.34$. Combining all of these data sets with Planck CMB lensing yields joint parameter constraints of $S_8 = 0.812^{+0.008}_{-0.008}$, $Omega_{mathrm{m}} = 0.306^{+0.004}_{-0.005}$, $h=0.680^{+0.004}_{-0.003}$, and $sum m_{ u}<0.13 ;mathrm{eV; (95% ;CL)}$ in $Lambda$CDM; $S_8 = 0.812^{+0.008}_{-0.008}$, $Omega_{mathrm{m}} = 0.302^{+0.006}_{-0.006}$, $h=0.687^{+0.006}_{-0.007}$, and $w=-1.031^{+0.030}_{-0.027}$ in $w$CDM. (abridged)
Two of the most sensitive probes of the large scale structure of the universe are the clustering of galaxies and the tangential shear of background galaxy shapes produced by those foreground galaxies, so-called galaxy-galaxy lensing. Combining the measurements of these two two-point functions leads to cosmological constraints that are independent of the galaxy bias factor. The optimal choice of foreground, or lens, galaxies is governed by the joint, but conflicting requirements to obtain accurate redshift information and large statistics. We present cosmological results from the full 5000 sq. deg. of the Dark Energy Survey first three years of observations (Y3) combining those two-point functions, using for the first time a magnitude-limited lens sample (MagLim) of 11 million galaxies especially selected to optimize such combination, and 100 million background shapes. We consider two cosmological models, flat $Lambda$CDM and $w$CDM. In $Lambda$CDM we obtain for the matter density $Omega_m = 0.320^{+0.041}_{-0.034}$ and for the clustering amplitude $S_8 = 0.778^{+0.037}_{-0.031}$, at 68% C.L. The latter is only 1$sigma$ smaller than the prediction in this model informed by measurements of the cosmic microwave background by the Planck satellite. In $w$CDM we find $Omega_m = 0.32^{+0.044}_{-0.046}$, $S_8=0.777^{+0.049}_{-0.051}$, and dark energy equation of state $w=-1.031^{+0.218}_{-0.379}$. We find that including smaller scales while marginalizing over non-linear galaxy bias improves the constraining power in the $Omega_m-S_8$ plane by $31%$ and in the $Omega_m-w$ plane by $41%$ while yielding consistent cosmological parameters from those in the linear bias case. These results are combined with those from cosmic shear in a companion paper to present full DES-Y3 constraints from the three two-point functions (3x2pt).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا