Design and analysis of deployable clustered tensegrity cable domes


Abstract in English

This study presents the design and analysis of deployable cable domes based on the clustered tensegrity structures (CTS). In this paper, the statics and dynamics equations of the CTS are first given. Using a traditional Levy cable dome as an example, we show the approach to modify the Levy dome to a deployable CTS one. The strings to be clustered are determined by the requirement of prestress mode and global stability. The deployment trajectory is proposed by changing the deployment ratio (the ratio between the radius of the inner and outer rings of the cable dome). Then, the quasi-static and dynamic deployment of clustered tensegrity dome is studied. Results show that the proposed CTS cable dome always has one prestress mode and is globally stable in its deployment trajectory. In the deployment process analysis, the dynamics show that the systems dynamic response differs from the quasi-static simulation as the actuation speed increases. That is, for a fast deployment process, quasi-static simulation is not accurate enough. The dynamics effects of the deployment must be considered. The developed approaches can also be used for the design and analysis of various kinds of CTS.

Download