Do you want to publish a course? Click here

The Physics of Galactic Winds Driven by Cosmic Rays II: Isothermal Streaming Solutions

62   0   0.0 ( 0 )
 Added by Eliot Quataert
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use analytic calculations and time-dependent spherically-symmetric simulations to study the properties of isothermal galactic winds driven by cosmic-rays (CRs) streaming at the Alfven velocity. The simulations produce time-dependent flows permeated by strong shocks; we identify a new linear instability of sound waves that sources these shocks. The shocks substantially modify the wind dynamics, invalidating previous steady state models: the CR pressure $p_c$ has a staircase-like structure with $dp_c/dr simeq 0$ in most of the volume, and the time-averaged CR energetics are in many cases better approximated by $p_c propto rho^{1/2}$, rather than the canonical $p_c propto rho^{2/3}$. Accounting for this change in CR energetics, we analytically derive new expressions for the mass-loss rate, momentum flux, wind speed, and wind kinetic power in galactic winds driven by CR streaming. We show that streaming CRs are ineffective at directly driving cold gas out of galaxies, though CR-driven winds in hotter ISM phases may entrain cool gas. For the same physical conditions, diffusive CR transport (Paper I) yields mass-loss rates that are a few-100 times larger than streaming transport, and asymptotic wind powers that are a factor of $simeq 4$ larger. We discuss the implications of our results for galactic wind theory and observations; strong shocks driven by CR-streaming-induced instabilities produce gas with a wide range of densities and temperatures, consistent with the multiphase nature of observed winds. We also quantify the applicability of the isothermal gas approximation for modeling streaming CRs and highlight the need for calculations with more realistic thermodynamics.



rate research

Read More

127 - C. M. Booth 2013
We present results from high-resolution hydrodynamic simulations of isolated SMC- and Milky Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading factors of up to ~10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with propto v_c^{1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to SN driven winds, where most of the acceleration happens violently in situ near star forming sites. In contrast, the CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T~10^4 K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra.
Cosmic rays (CRs) are a plausible mechanism for launching winds of cool material from the discs of star-forming galaxies. However, there is no consensus on what types of galaxies likely host CR-driven winds, or what role these winds might play in regulating galaxies star formation rates. Using a detailed treatment of the transport and losses of hadronic CRs developed in the previous paper in this series, here we develop a semi-analytic model that allows us to assess the viability of using CRs to launch cool winds from galactic discs. In particular, we determine the critical CR fluxes -- and corresponding star formation rate surface densities -- above which hydrostatic equilibrium within a given galaxy is precluded because CRs drive the gas off in a wind or otherwise render it unstable. We show that, for star-forming galaxies with lower gas surface densities typical of the Galaxy and local dwarfs, the locus of this CR stability curve patrols the high side of the observed distribution of galaxies in the Kennicutt-Schmidt parameter space of star formation rate versus gas surface density. However, hadronic losses render CRs unable to drive winds in galaxies with higher surface densities. Our results show that quiescent, low surface density galaxies like the Milky Way are poised on the cusp of instability, such that small changes to ISM parameters can lead to the launching of CR-driven outflows, and we suggest that, as a result, CR feedback sets an ultimate limit to the star formation efficiency of most modern galaxies.
286 - S. Recchia , P. Blasi , G. Morlino 2016
The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfven waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfven waves.
181 - Masami Tsuchiya 2013
We study fundamental properties of steady, spherically symmetric, isothermal galactic outflow in appropriate gravitational potential models. We aim at constructing a universal scale free theory not only for galactic winds, but also for winds from clusters/groups of galaxies. In particular, we consider effects of mass-density distribution on the formation of transonic galactic outflows under several models of the density distribution profile predicted by cosmological simulations of structure formation based on the cold dark matter (CDM) scenario. In this study, we have clarified that there exists two types of transonic solutions: outflows from the central region and from distant region with a finite radius, depending upon the density distribution of the system. The system with sufficiently steep density gradient at the center is allowed to have the transonic outflows from the center. The resultant criterion intriguingly indicates that the density gradient at the center must be steeper than that of the prediction of conventional CDM model including Navarro, Frenk & White (1997) and Moore et al. (1999). This result suggests that an additional steeper density distribution originated by baryonic systems such as the stellar component and/or the central massive black hole is required to realize transonic outflow from the central region. On the other hand, we predict the outflow, which is started at the outskirts of the galactic center and is slowly-accelerated without any drastic energy injection like starburst events. These transonic outflows may contribute secularly to the metal enrichment of the intergalactic medium.
We study the effects of drift motions and the advection by a Galactic wind on the propagation of cosmic rays in the Galaxy. We employ a simplified magnetic field model, based on (and similar to) the Jansson-Farrar model for the Galactic magnetic field. Diffusion is allowed to be anisotropic. The relevant equations are solved numerically, using a set of stochastic differential equations. Inclusion of drift and a Galactic wind significantly shortens the residence time of cosmic rays, even for moderate wind speeds
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا