Do you want to publish a course? Click here

Large tunability of strain in WO3 single-crystal microresonators controlled by exposure to H2 gas

161   0   0.0 ( 0 )
 Added by Nicola Manca Dr.
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Strain engineering is one of the most effective approaches to manipulate the physical state of materials, control their electronic properties, and enable crucial functionalities. Because of their rich phase diagrams arising from competing ground states, quantum materials are an ideal playground for on-demand material control, and can be used to develop emergent technologies, such as adaptive electronics or neuromorphic computing. It was recently suggested that complex oxides could bring unprecedented functionalities to the field of nanomechanics, but the possibility of precisely controlling the stress state of materials is so far lacking. Here we demonstrate the wide and reversible manipulation of the stress state of single-crystal WO3 by strain engineering controlled by catalytic hydrogenation. Progressive incorporation of hydrogen in freestanding ultra-thin structures determines large variations of their mechanical resonance frequencies and induces static deformation. Our results demonstrate hydrogen doping as a new paradigm to reversibly manipulate the mechanical properties of nanodevices based on materials control.



rate research

Read More

We report synthesis of non superconducting parent compound of iron chalcogenide, i.e., FeTe single crystal by self flux method. The FeTe single crystal is crystallized in tetragonal structure with the P4/nmm space group. The detailed SEM (scanning electron microscopy) results showed that the crystals are formed in slab like morphology and are near (slight deficiency of Te) stoichiometric with homogenous distribution of Fe and Te. The coupled structural and magnetic phase transition is seen at around 70K in both electrical resistivity and magnetization measurements, which is hysteric (deltaT = 5K) in nature with cooling and warming cycles. Magnetic susceptibility (chi-T) measurements showed the magnetic transition to be of antiferromagnetic nature, which is substantiated by isothermal magnetization (M-H) plots as well. The temperature dependent electrical resistivity measured in 10kOe field in both in plane and out of plane field directions showed that the hysteric width nearly becomes double to deltaT = 10K, and is maximum for the out of plane field direction for the studied FeTe single crystal. We also obtained a sharp spike like peak in heat capacity Cp(T) measurement due to the coupled structural and magnetic order phase transitions.
224 - A. Uddin , D. Estevez , H.X. Peng 2020
Previously, we have shown the advantages of an approach based on microstructural modulation of the functional phase and topology of periodically arranged elements to program wave scattering in ferromagnetic microwire composites. However, the possibility of making full use of composite intrinsic structure was not exploited. In this work, we implement the concept of material plainification by an in-built vertical interface on randomly dispersed short-cut microwire composites allowing the adjustment of electromagnetic properties to a large extent. Such interface was modified through arranging wires of different structures in two separated regions and by enlarging or reducing these regions through wire concentration variations leading to polarization differences across the interface and hence microwave tunability. When the wire concentration was equal in both regions, two well-defined transmission windows with varied amplitude and bandwidth were generated. Wire concentration fluctuations resulted in strong scattering changes ranging from broad passbands to stopbands with pronounced transmission dips, demonstrating the intimate relationship between wire content and space charge variations at the interface. Overall, this study provides a novel method to rationally exploit interfacial effects in microwire composites. Moreover, the advantages of enabling significantly tunable scattering spectra by merely 0.053 vol. % filler loading and relatively simple structure make the proposed composite plainification strategy instrumental to designing microwave filters with broadband frequency selectivity.
Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high $T_c$ superconductivity of FeSe systems.
245 - R. Peng , X. P. Shen , X. Xie 2013
Single-layer FeSe films with extremely expanded in-plane lattice constant of 3.99A are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures, and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron pockets at the Brillion zone corner are resolved with negligible hybridization between them, indicating the symmetry of the low energy electronic structure remains intact as a free-standing single-layer FeSe, although it is on a substrate. The superconducting gap closes at a record high temperature of 70K for the iron based superconductors. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results put strong constraints on the current theories, and support the coexistence of both even and odd parity spin-singlet pairing channels as classified by the lattice symmetry.
The measurement of the Si lattice parameter by x-ray interferometry assumes the use of strain-free crystals, which might not be true because of intrinsic stresses due to surface relaxation, reconstruction, and oxidation. We used x-ray phase-contrast topography to investigate the strain sensitivity to the finishing, annealing, and coating of the interferometer crystals.We assessed the topography capabilities by measuring the lattice strain due to films of copper deposited on the interferometer mirror-crystal. A byproduct has been the measurement of the surface stresses after complete relaxation of the coatings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا