Do you want to publish a course? Click here

GRAVITY K-band spectroscopy of HD 206893 B: brown dwarf or exoplanet

264   0   0.0 ( 0 )
 Added by Jens Kammerer
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim to reveal the nature of the reddest known substellar companion HD 206893 B by studying its near-infrared colors and spectral morphology and by investigating its orbital motion. We fit atmospheric models for giant planets and brown dwarfs and perform spectral retrievals with petitRADTRANS and ATMO on the observed GRAVITY, SPHERE, and GPI spectra of HD 206893 B. To recover its unusual spectral features, we include additional extinction by high-altitude dust clouds made of enstatite grains in the atmospheric model fits. We also infer the orbital parameters of HD 206893 B by combining the $sim 100~mutext{as}$ precision astrometry from GRAVITY with data from the literature and constrain the mass and position of HD 206893 C based on the Gaia proper motion anomaly of the system. The extremely red color and the very shallow $1.4~mutext{m}$ water absorption feature of HD 206893 B can be fit well with the adapted atmospheric models and spectral retrievals. Altogether, our analysis suggests an age of $sim 3$-$300~text{Myr}$ and a mass of $sim 5$-$30~text{M}_text{Jup}$ for HD 206893 B, which is consistent with previous estimates but extends the parameter space to younger and lower-mass objects. The GRAVITY astrometry points to an eccentric orbit ($e = 0.29^{+0.06}_{-0.11}$) with a mutual inclination of $< 34.4~text{deg}$ with respect to the debris disk of the system. While HD 206893 B could in principle be a planetary-mass companion, this possibility hinges on the unknown influence of the inner companion on the mass estimate of $10^{+5}_{-4}~text{M}_text{Jup}$ from radial velocity and Gaia as well as a relatively small but significant Argus moving group membership probability of $sim 61%$. However, we find that if the mass of HD 206893 B is $< 30~text{M}_text{Jup}$, then the inner companion HD 206893 C should have a mass between $sim 8$-$15~text{M}_text{Jup}$.



rate research

Read More

81 - D. Mesa , V. DOrazi , A. Vigan 2020
The determination of the fundamental properties (mass, separation, age, gravity and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and evolution mechanisms. Spectroscopy of substellar companions is available to date only for a limited number of objects (and mostly at very low resolution, R<50) because of technical limitations, i.e., contrast and angular resolution. We present medium resolution (R=350), coronagraphic long-slit spectroscopic observations with SPHERE of two substellar companions, HD 1160 B and HD 19467 B. We found that HD 1160 B has a peculiar spectrum that cannot be fitted by spectra in current spectral libraries. A good fit is possible only considering separately the Y+J and the H spectral band. The spectral type is between M5 and M7. We also estimated a T_eff of 2800-2900 K and a log(g) of 3.5-4.0 dex. The low surface gravity seems to favour young age (10-20 Myr) and low mass (~20 M Jup ) for this object. HD 19467 B is instead a fully evolved object with a T_eff of ~1000 K and log g of ~5.0 dex. Its spectral type is T6+/-1.
We present new near-infrared Gemini Planet Imager (GPI) spectroscopy of HD 206893 B, a substellar companion orbiting within the debris disk of its F5V star. The $J$, $H$, $K1$, and $K2$ spectra from GPI demonstrate the extraordinarily red colors of the object, confirming it as the reddest substellar object observed to date. The significant flux increase throughout the infrared presents a challenging atmosphere to model with existing grids. Best-fit values vary from 1200 K to 1800 K for effective temperature and from 3.0 to 5.0 for log($g$), depending on which individual wavelength band is fit and which model suite is applied. The extreme redness of the companion can be partially reconciled by invoking a high-altitude layer of sub-micron dust particles, similar to dereddening approaches applied to the peculiar red field L-dwarf population. However, reconciling the HD 206893 B spectra with even those of the reddest low-gravity L-dwarf spectra still requires the contribution of additional atmospheric dust, potentially due to the debris disk environment in which the companion resides. Orbit fitting from four years of astrometric monitoring is consistent with a $sim$30-year period, orbital inclination of 147$^{circ}$, and semimajor axis of 10 au, well within the estimated disk inner radius of $sim$50 au. As one of very few substellar companions imaged interior to a circumstellar disk, the properties of this system offer important dynamical constraints on companion-disk interaction and provide a benchmark for substellar and planetary atmospheric study.
We present moderate-resolution ($Rsim4000$) $K$ band spectra of the super-Jupiter, $kappa$ Andromedae b. The data were taken with the OSIRIS integral field spectrograph at Keck Observatory. The spectra reveal resolved molecular lines from H$_{2}$O and CO. The spectra are compared to a custom $PHOENIX$ atmosphere model grid appropriate for young planetary-mass objects. We fit the data using a Markov Chain Monte Carlo forward modeling method. Using a combination of our moderate-resolution spectrum and low-resolution, broadband data from the literature, we derive an effective temperature of $T_mathrm{eff}$ = 1950 - 2150 K, a surface gravity of $log g=3.5 - 4.5$, and a metallicity of [M/H] = $-0.2 - 0.0$. These values are consistent with previous estimates from atmospheric modeling and the currently favored young age of the system ($<$50 Myr). We derive a C/O ratio of 0.70$_{-0.24}^{+0.09}$ for the source, broadly consistent with the solar C/O ratio. This, coupled with the slightly subsolar metallicity, implies a composition consistent with that of the host star, and is suggestive of formation by a rapid process. The subsolar metallicity of $kappa$ Andromedae b is also consistent with predictions of formation via gravitational instability. Further constraints on formation of the companion will require measurement of the C/O ratio of $kappa$ Andromedae A. We also measure the radial velocity of $kappa$ Andromedae b for the first time, with a value of $-1.4pm0.9,mathrm{km},mathrm{s}^{-1}$ relative to the host star. We find that the derived radial velocity is consistent with the estimated high eccentricity of $kappa$ Andromedae b.
High contrast imaging enables the determination of orbital parameters for substellar companions (planets, brown dwarfs) from the observed relative astrometry and the estimation of model and age-dependent masses from their observed magnitudes or spectra. Combining astrometric positions with radial velocity gives direct constraints on the orbit and on the dynamical masses of companions. A brown dwarf was discovered with the VLT/SPHERE instrument in 2017, which orbits at $sim$ 11 au around HD 206893. Its mass was estimated between 12 and 50 $M_{Jup}$ from evolutionary models and its photometry. However, given the significant uncertainty on the age of the system and the peculiar spectrophotometric properties of the companion, this mass is not well constrained. We aim at constraining the orbit and dynamical mass of HD 206893 B. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than three years. We then combined those data with astrometry data obtained by Hipparcos and Gaia with a time baseline of 24 years. We used a MCMC approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data. We infer a period between 21 and 33{deg} and an inclination in the range 20-41{deg} from pole-on from HD 206893 B relative astrometry. The RV data show a significant RV drift over 1.6 yrs. We show that HD 206893 B cannot be the source of this observed RV drift as it would lead to a dynamical mass inconsistent with its photometry and spectra and with Hipparcos and Gaia data. An additional inner (semimajor axis in the range 1.4-2.6 au) and massive ($sim$ 15 $M_{Jup}$) companion is needed to explain the RV drift, which is compatible with the available astrometric data of the star, as well as with the VLT/SPHERE and VLT/NaCo nondetection.
The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d=18.69+/-0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K1-band recover the companion and reveal that it is near the L/T transition (T1+/-2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a $2sigma$ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study secondary effects such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا